
An introduction to Linux environment

Please note the manual is also available at http://linuxcommand.org/lc3_learning_the_shell.php

Note: The terminal in Linux is similar to command prompt in windows PC where we type commands to

perform any specific task.

The manual is divided into two section with different lessons:

Part 1 – Shell program, terminal and commands

Lessons:

1. What is “the Shell”?

2. Navigation

3. Looking Around

4. A Guided Tour

5. Manipulating files

6. Working with Commands

7. I/O Redirection

8. Expansion

9. Permissions

10. Job Control

Part 2 – Creating Shell script (i.e, file containing pre-loaded series of commands to execute task

Lessons:

11. Writing Your First Script and Getting It to Work

12. Editing the Scripts You Already Have

13. Here Scripts

14. Variables

15. Command Substitution and Constants

16. Shell Functions

17. Some Real Work

18. Flow Control - Part 1

19. Stay Out of Trouble

20. Keyboard Input and Arithmetic

21. Flow Control - Part 2

22. Positional Parameters

23. Flow Control - Part3

24. Errors and Signals and Traps (Oh My!) - Part 1

25. Errors and Signals and Traps (Oh My!) - Part 2

Suggested manual book:The Linux Command Line, A complete Introduction, by William Shotts available

on major sites, eg. Amazon or online at https://www.linuxzasve.com/preuzimanje/TLCL-09.12.pdf

http://linuxcommand.org/lc3_learning_the_shell.php
https://www.linuxzasve.com/preuzimanje/TLCL-09.12.pdf

1/9/2020 LinuxCommand.org: Learning the shell.

linuxcommand.org/lc3_learning_the_shell.php 1/1

Why Bother?
Why do you need to learn the command line anyway? Well, let me tell you a story. A few years ago
we had a problem where I used to work. There was a shared drive on one of our file servers that
kept getting full. I won't mention that this legacy operating system did not support user quotas; that's
another story. But the server kept getting full and it stopped people from working. One of our
software engineers spent the better part of a day writing a C++ program that would look through all
the user's directories and add up the space they were using and make a listing of the results. Since I
was forced to use the legacy OS while I was on the job, I installed a Linux-like command line
environment for it. When I heard about the problem, I realized I could do all the work this engineer
had done with this single line:

du -s * | sort -nr > $HOME/user_space_report.txt

Graphical user interfaces (GUIs) are helpful for many tasks, but they are not good for all tasks. I
have long felt that most computers today are not powered by electricity. They instead seem to be
powered by the "pumping" motion of the mouse! Computers were supposed to free us from manual
labor, but how many times have you performed some task you felt sure the computer should be able
to do but you ended up doing the work yourself by tediously working the mouse? Pointing and
clicking, pointing and clicking.

I once heard an author say that when you are a child you use a computer by looking at the pictures.
When you grow up, you learn to read and write. Welcome to Computer Literacy 101. Now let's get to
work.

Contents
1. What is "the Shell"?
2. Navigation
3. Looking Around
4. A Guided Tour
5. Manipulating Files
6. Working with Commands
7. I/O Redirection
8. Expansion
9. Permissions

10. Job Control

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://www.cygwin.com/
http://linuxcommand.org/lc3_lts0010.php
http://linuxcommand.org/lc3_lts0020.php
http://linuxcommand.org/lc3_lts0030.php
http://linuxcommand.org/lc3_lts0040.php
http://linuxcommand.org/lc3_lts0050.php
http://linuxcommand.org/lc3_lts0060.php
http://linuxcommand.org/lc3_lts0070.php
http://linuxcommand.org/lc3_lts0080.php
http://linuxcommand.org/lc3_lts0090.php
http://linuxcommand.org/lc3_lts0100.php
mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 1: What is the shell?

linuxcommand.org/lc3_lts0010.php 1/3

What is "the Shell"?
Simply put, the shell is a program that takes commands from the keyboard and gives them to the
operating system to perform. In the old days, it was the only user interface available on a Unix-like
system such as Linux. Nowadays, we have graphical user interfaces (GUIs) in addition to command
line interfaces (CLIs) such as the shell.

On most Linux systems a program called bash (which stands for Bourne Again SHell, an enhanced
version of the original Unix shell program, sh, written by Steve Bourne) acts as the shell program.
Besides bash, there are other shell programs that can be installed in a Linux system. These include:
ksh, tcsh and zsh.

What's a "Terminal?"
It's a program called a terminal emulator. This is a program that opens a window and lets you
interact with the shell. There are a bunch of different terminal emulators you can use. Most Linux
distributions supply several, such as: gnome-terminal, konsole, xterm, rxvt, kvt, nxterm,
and eterm.

Starting a Terminal
Your window manager probably has a way to launch a terminal from the menu. Look through the list
of programs to see if anything looks like a terminal emulator. If you are a KDE user, the terminal
program is called "konsole," in Gnome it's called "gnome-terminal." You can start up as many of
these as you want and play with them. While there are a number of different terminal emulators, they
all do the same thing. They give you access to a shell session. You will probably develop a
preference for one, based on the different bells and whistles each one provides.

Testing the Keyboard
OK, let's try some typing. Bring up a terminal window. You should see a shell prompt that contains
your user name and the name of the machine followed by a dollar sign. Something like this:

[me@linuxbox me]$

Excellent! Now type some nonsense characters and press the enter key.

[me@linuxbox me]$ kdkjflajfks

http://linuxcommand.org/lc3_man_pages/bash1.html

1/9/2020 Learning the shell - Lesson 1: What is the shell?

linuxcommand.org/lc3_lts0010.php 2/3

If all went well, you should have gotten an error message complaining that it cannot understand you:

[me@linuxbox me]$ kdkjflajfks

bash: kdkjflajfks: command not found

Wonderful! Now press the up-arrow key. Watch how our previous command "kdkjflajfks" returns. Yes,
we have command history. Press the down-arrow and we get the blank line again.

Recall the "kdkjflajfks" command using the up-arrow key if needed. Now, try the left and right-arrow
keys. You can position the text cursor anywhere in the command line. This allows you to easily
correct mistakes.

You're not logged in as root, are you?
If the last character of your shell prompt is # rather than $, you are operating as the superuser.
This means that you have administrative privileges. This can be potentially dangerous, since
you are able to delete or overwrite any file on the system. Unless you absolutely need
administrative privileges, do not operate as the superuser.

Using the Mouse
Even though the shell is a command line interface, the mouse is still handy.

Besides using the mouse to scroll the contents of the terminal window, you can copy text with the
mouse. Drag your mouse over some text (for example, "kdkjflajfks" right here on the browser
window) while holding down the left button. The text should highlight. Release the left button and
move your mouse pointer to the terminal window and press the middle mouse button (alternately,
you can press both the left and right buttons at the same time if you are working on a touch pad).
The text you highlighted in the browser window should be copied into the command line.

A few words about focus...
When you installed your Linux system and its window manager (most likely Gnome or KDE), it
was configured to behave in some ways like that legacy operating system.

In particular, it probably has its focus policy set to "click to focus." This means that in order for a
window to gain focus (become active) you have to click in the window. This is contrary to
traditional X Window behavior. You should consider setting the focus policy to "focus follows
mouse". You may find it strange at first that windows don't raise to the front when they get focus
(you have to click on the window to do that), but you will enjoy being able to work on more than

1/9/2020 Learning the shell - Lesson 1: What is the shell?

linuxcommand.org/lc3_lts0010.php 3/3

one window at once without having the active window obscuring the the other. Try it and give it
a fair trial; I think you will like it. You can find this setting in the configuration tools for your
window manager.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 2: Navigation

linuxcommand.org/lc3_lts0020.php 1/5

Navigation
In this lesson, I will introduce your first three commands: pwd (print working directory), cd (change
directory), and ls (list files and directories).

If you have not worked with a command line interface before, you will need to pay close attention to
this lesson, since the concepts will take some getting used to.

File System Organization
Like that legacy operating system, the files on a Linux system are arranged in what is called a
hierarchical directory structure. This means that they are organized in a tree-like pattern of
directories (called folders in other systems), which may contain files and other directories. The first
directory in the file system is called the root directory. The root directory contains files and
subdirectories, which contain more files and subdirectories and so on and so on.

Most graphical environments today include a file manager program to view and manipulate the
contents of the file system. Often you will see the file system represented like this:

One important difference between the legacy operating system and Unix-like operating systems such
as Linux is that Linux does not employ the concept of drive letters. While drive letters split the file
system into a series of different trees (one for each drive), Linux always has a single tree. Different
storage devices may contain different branches of the tree, but there is always a single tree.

pwd
Since a command line interface cannot provide graphic pictures of the file system structure, it must
have a different way of representing it. Think of the file system tree as a maze, and you are standing
in it. At any given moment, you are located in a single directory. Inside that directory, you can see its

http://linuxcommand.org/lc3_man_pages/pwdh.html
http://linuxcommand.org/lc3_man_pages/cdh.html
http://linuxcommand.org/lc3_man_pages/ls1.html

1/9/2020 Learning the shell - Lesson 2: Navigation

linuxcommand.org/lc3_lts0020.php 2/5

files and the pathway to its parent directory and the pathways to the subdirectories of the directory in
which you are standing.

The directory you are standing in is called the working directory. To find the name of the working
directory, use the pwd command.

[me@linuxbox me]$ pwd
/home/me

When you first log on to a Linux system, the working directory is set to your home directory. This is
where you put your files. On most systems, your home directory will be called
/home/your_user_name, but it can be anything according to the whims of the system administrator.

To list the files in the working directory, use the ls command.

[me@linuxbox me]$ ls
Desktop Xrootenv.0 linuxcmd
GNUstep bin nedit.rpm
GUILG00.GZ hitni123.jpg nsmail

I will come back to ls in the next lesson. There are a lot of fun things you can do with it, but I have to
talk about pathnames and directories a bit first.

cd
To change your working directory (where you are standing in the maze) you use the cd command.
To do this, type cd followed by the pathname of the desired working directory. A pathname is the
route you take along the branches of the tree to get to the directory you want. Pathnames can be
specified in one of two different ways; absolute pathnames or relative pathnames. Let's look with
absolute pathnames first.

An absolute pathname begins with the root directory and follows the tree branch by branch until the
path to the desired directory or file is completed. For example, there is a directory on your system in
which most programs are installed. The pathname of the directory is /usr/bin. This means from the
root directory (represented by the leading slash in the pathname) there is a directory called "usr"
which contains a directory called "bin".

Let's try this out:

[me@linuxbox me]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin
[me@linuxbox bin]$ ls
[lwp-request
2to3 lwp-rget

1/9/2020 Learning the shell - Lesson 2: Navigation

linuxcommand.org/lc3_lts0020.php 3/5

2to3-2.6 lxterm
a2p lz
aalib-config lzcat
aconnect lzma
acpi_fakekey lzmadec
acpi_listen lzmainfo
add-apt-repository m17n-db
addpart magnifier

and many more...

Now we can see that we have changed the current working directory to /usr/bin and that it is full of
files. Notice how your prompt has changed? As a convenience, it is usually set up to display the
name of the working directory.

Where an absolute pathname starts from the root directory and leads to its destination, a relative
pathname starts from the working directory. To do this, it uses a couple of special notations to
represent relative positions in the file system tree. These special notations are "." (dot) and ".." (dot
dot).

The "." notation refers to the working directory itself and the ".." notation refers to the working
directory's parent directory. Here is how it works. Let's change the working directory to /usr/bin again:

[me@linuxbox me]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

O.K., now let's say that we wanted to change the working directory to the parent of /usr/bin which is
/usr. We could do that two different ways. First, with an absolute pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

Or, with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods with identical results. Which one should you use? The one that requires the
least typing!

1/9/2020 Learning the shell - Lesson 2: Navigation

linuxcommand.org/lc3_lts0020.php 4/5

Likewise, we can change the working directory from /usr to /usr/bin in two different ways. First using
an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Or, with a relative pathname:

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost all cases, you can omit the
"./". It is implied. Typing:

[me@linuxbox usr]$ cd bin

would do the same thing. In general, if you do not specify a pathname to something, the working
directory will be assumed. There is one important exception to this, but we won't get to that for a
while.

A Few Shortcuts
If you type cd followed by nothing, cd will change the working directory to your home directory.

A related shortcut is to type cd ~user_name. In this case, cd will change the working directory to
the home directory of the specified user.

Typing cd - changes the working directory to the previous one.

Important facts about file names
1. File names that begin with a period character are hidden. This only means that ls will not

list them unless you say ls -a. When your account was created, several hidden files
were placed in your home directory to configure things for your account. Later on we will
take a closer look at some of these files to see how you can customize your environment.
In addition, some applications will place their configuration and settings files in your home
directory as hidden files.

1/9/2020 Learning the shell - Lesson 2: Navigation

linuxcommand.org/lc3_lts0020.php 5/5

2. File names in Linux, like Unix, are case sensitive. The file names "File1" and "file1" refer
to different files.

3. Linux has no concept of a "file extension" like legacy operating systems. You may name
files any way you like. However, while Linux itself does not care about file extensions,
many application programs do.

4. Though Linux supports long file names which may contain embedded spaces and
punctuation characters, limit the punctuation characters to period, dash, and underscore.
Most importantly, do not embed spaces in file names. If you want to represent spaces
between words in a file name, use underscore characters. You will thank yourself later.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 3: Looking around

linuxcommand.org/lc3_lts0030.php 1/6

Looking Around
Now that you know how to move from working directory to working directory, we're going to take a
tour of your Linux system and, along the way, learn some things about what makes it tick. But before
we begin, I have to teach you some tools that will come in handy during our adventure. These are:

ls (list files and directories)
less (view text files)
file (classify a file's contents)

ls
The ls command is used to list the contents of a directory. It is probably the most commonly used
Linux command. It can be used in a number of different ways. Here are some examples:

Examples of the ls command

Command Result

ls List the files in the working directory

ls /bin
List the files in the /bin directory (or any other directory you care to
specify)

ls -l
List the files in the working directory in long format

ls -l /etc /bin
List the files in the /bin directory and the /etc directory in long format

ls -la ..
List all files (even ones with names beginning with a period character,
which are normally hidden) in the parent of the working directory in long
format

These examples also point out an important concept about commands. Most commands operate like
this:

http://linuxcommand.org/lc3_man_pages/ls1.html
http://linuxcommand.org/lc3_man_pages/less1.html
http://linuxcommand.org/lc3_man_pages/file1.html

1/9/2020 Learning the shell - Lesson 3: Looking around

linuxcommand.org/lc3_lts0030.php 2/6

 command -options arguments

where command is the name of the command, -options is one or more adjustments to the
command's behavior, and arguments is one or more "things" upon which the command operates.

In the case of ls, we see that ls is the name of the command, and that it can have one or more
options, such as -a and -l, and it can operate on one or more files or directories.

A Closer Look at Long Format

If you use the -l option with ls, you will get a file listing that contains a wealth of information about
the files being listed. Here's an example:

-rw------- 1 bshotts bshotts 576 Apr 17 1998 weather.txt
drwxr-xr-x 6 bshotts bshotts 1024 Oct 9 1999 web_page
-rw-rw-r-- 1 bshotts bshotts 276480 Feb 11 20:41 web_site.tar
-rw------- 1 bshotts bshotts 5743 Dec 16 1998 xmas_file.txt

---------- ------- ------- -------- ------------ -------------
 | | | | | |
 | | | | | File Name
 | | | | |
 | | | | +--- Modification Time
 | | | |
 | | | +------------- Size (in bytes)
 | | |
 | | +----------------------- Group
 | |
 | +-------------------------------- Owner
 |
 +-- File Permissions

File Name
The name of the file or directory.

Modification Time
The last time the file was modified. If the last modification occurred more than six months in the
past, the date and year are displayed. Otherwise, the time of day is shown.

Size
The size of the file in bytes.

Group
The name of the group that has file permissions in addition to the file's owner.

Owner
The name of the user who owns the file.

File Permissions
A representation of the file's access permissions. The first character is the type of file. A "-"
indicates a regular (ordinary) file. A "d" indicates a directory. The second set of three
characters represent the read, write, and execution rights of the file's owner. The next three
represent the rights of the file's group, and the final three represent the rights granted to
everybody else. I'll discuss this in more detail in a later lesson.

1/9/2020 Learning the shell - Lesson 3: Looking around

linuxcommand.org/lc3_lts0030.php 3/6

less
less is a program that lets you view text files. This is very handy since many of the files used to
control and configure Linux are human readable.

What is "text"?
There are many ways to represent information on a computer. All methods involve defining a
relationship between the information and some numbers that will be used to represent it.
Computers, after all, only understand numbers and all data is converted to numeric
representation.

Some of these representation systems are very complex (such as compressed multimedia
files), while others are rather simple. One of the earliest and simplest is called ASCII text. ASCII
(pronounced "As-Key") is short for American Standard Code for Information Interchange. This
is a simple encoding scheme that was first used on Teletype machines to map keyboard
characters to numbers.

Text is a simple one-to-one mapping of characters to numbers. It is very compact. Fifty
characters of text translates to fifty bytes of data. Throughout a Linux system, many files are
stored in text format and there are many Linux tools that work with text files. Even the legacy
operating systems recognize the importance of this format. The well-known NOTEPAD.EXE
program is an editor for plain ASCII text files.

The less program is invoked by simply typing:

less text_file

This will display the file.

Controlling less

Once started, less will display the text file one page at a time. You may use the Page Up and Page
Down keys to move through the text file. To exit less, type "q". Here are some commands that less
will accept:

Keyboard commands for the less program

Command Action

Page Up or b Scroll back one page

Page Down or
space

Scroll forward one page

http://linuxcommand.org/lc3_man_pages/ascii7.html

1/9/2020 Learning the shell - Lesson 3: Looking around

linuxcommand.org/lc3_lts0030.php 4/6

G Go to the end of the text file

1G Go to the beginning of the text file

/characters Search forward in the text file for an occurrence of the specified
characters

n Repeat the previous search

h Display a complete list less commands and options

q Quit

file
As you wander around your Linux system, it is helpful to determine what kind of data a file contains
before you try to view it. This is where the file command comes in. file will examine a file and tell
you what kind of file it is.

To use the file program, just type:

file name_of_file

The file program can recognize most types of files, such as:

Various kinds of files

File Type Description Viewable as text?

ASCII text The name says it all yes

Bourne-Again shell
script text

A bash script yes

ELF 32-bit LSB core A core dump file (a program will create this no

1/9/2020 Learning the shell - Lesson 3: Looking around

linuxcommand.org/lc3_lts0030.php 5/6

file when it crashes)

ELF 32-bit LSB
executable

An executable binary program no

ELF 32-bit LSB
shared object

A shared library no

GNU tar archive A tape archive file. A common way of
storing groups of files.

no, use tar tvf to view
listing.

gzip compressed
data

An archive compressed with gzip no

HTML document text A web page yes

JPEG image data A compressed JPEG image no

PostScript document
text

A PostScript file yes

RPM A Red Hat Package Manager archive no, use rpm -q to
examine contents.

Zip archive data An archive compressed with zip no

While it may seem that most files cannot be viewed as text, you will be surprised how many can.
This is especially true of the important configuration files. You will also notice during our adventure
that many features of the operating system are controlled by shell scripts. In Linux, there are no
secrets!

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 3: Looking around

linuxcommand.org/lc3_lts0030.php 6/6

1/9/2020 Learning the shell - Lesson 4: A Guided Tour

linuxcommand.org/lc3_lts0040.php 1/4

A Guided Tour
It's time to take our tour. The table below lists some interesting places to explore. This is by no
means a complete list, but it should prove to be an interesting adventure. For each of the directories
listed below, do the following:

cd into each directory.
Use ls to list the contents of the directory.
If you see an interesting file, use the file command to determine its contents.
For text files, use less to view them.

Interesting directories and their contents

Directory Description

/ The root directory where the file system begins. In most cases the root
directory only contains subdirectories.

/boot This is where the Linux kernel and boot loader files are kept. The kernel
is a file called vmlinuz.

/etc The /etc directory contains the configuration files for the system. All of
the files in /etc should be text files. Points of interest:

/etc/passwd
The passwd file contains the essential information for each user. It
is here that users are defined.

/etc/fstab
The fstab file contains a table of devices that get mounted when
your system boots. This file defines your disk drives.

/etc/hosts
This file lists the network host names and IP addresses that are
intrinsically known to the system.

/etc/init.d
This directory contains the scripts that start various system services
typically at boot time.

/bin, /usr/bin These two directories contain most of the programs for the system. The
/bin directory has the essential programs that the system requires to
operate, while /usr/bin contains applications for the system's users.

/sbin,
/usr/sbin

The sbin directories contain programs for system administration, mostly
for use by the superuser.

/usr The /usr directory contains a variety of things that support user

1/9/2020 Learning the shell - Lesson 4: A Guided Tour

linuxcommand.org/lc3_lts0040.php 2/4

applications. Some highlights:

/usr/share/X11
Support files for the X Window system

/usr/share/dict
Dictionaries for the spelling checker. Bet you didn't know that Linux
had a spelling checker. See look and aspell.

/usr/share/doc
Various documentation files in a variety of formats.

/usr/share/man
The man pages are kept here.

/usr/src
Source code files. If you installed the kernel source code package,
you will find the entire Linux kernel source code here.

/usr/local /usr/local and its subdirectories are used for the installation of
software and other files for use on the local machine. What this really
means is that software that is not part of the official distribution (which
usually goes in /usr/bin) goes here.

When you find interesting programs to install on your system, they should
be installed in one of the /usr/local directories. Most often, the
directory of choice is /usr/local/bin.

/var The /var directory contains files that change as the system is running.
This includes:

/var/log
Directory that contains log files. These are updated as the system
runs. You should view the files in this directory from time to time, to
monitor the health of your system.

/var/spool
This directory is used to hold files that are queued for some
process, such as mail messages and print jobs. When a user's mail
first arrives on the local system (assuming you have local mail), the
messages are first stored in /var/spool/mail

/lib The shared libraries (similar to DLLs in that other operating system) are
kept here.

/home /home is where users keep their personal work. In general, this is the
only place users are allowed to write files. This keeps things nice and
clean :-)

/root This is the superuser's home directory.

/tmp /tmp is a directory in which programs can write their temporary files.

/dev The /dev directory is a special directory, since it does not really contain
files in the usual sense. Rather, it contains devices that are available to
the system. In Linux (like Unix), devices are treated like files. You can

http://linuxcommand.org/lc3_man_pages/look1.html
http://linuxcommand.org/lc3_man_pages/aspell1.html

1/9/2020 Learning the shell - Lesson 4: A Guided Tour

linuxcommand.org/lc3_lts0040.php 3/4

read and write devices as though they were files. For example
/dev/fd0 is the first floppy disk drive, /dev/sda (/dev/hda on older
systems) is the first hard drive. All the devices that the kernel
understands are represented here.

/proc The /proc directory is also special. This directory does not contain files.
In fact, this directory does not really exist at all. It is entirely virtual. The
/proc directory contains little peep holes into the kernel itself. There are
a group of numbered entries in this directory that correspond to all the
processes running on the system. In addition, there are a number of
named entries that permit access to the current configuration of the
system. Many of these entries can be viewed. Try viewing
/proc/cpuinfo. This entry will tell you what the kernel thinks of your
CPU.

/media,/mnt Finally, we come to /media, a normal directory which is used in a special
way. The /media directory is used for mount points. As we learned in the
second lesson, the different physical storage devices (like hard disk
drives) are attached to the file system tree in various places. This
process of attaching a device to the tree is called mounting. For a device
to be available, it must first be mounted.

When your system boots, it reads a list of mounting instructions in the file
/etc/fstab, which describes which device is mounted at which mount
point in the directory tree. This takes care of the hard drives, but you may
also have devices that are considered temporary, such as CD-ROMs,
thumb drives, and floppy disks. Since these are removable, they do not
stay mounted all the time. The /media directory is used by the automatic
device mounting mechanisms found in modern desktop oriented Linux
distributions. On systems that require manual mounting of removable
devices, the /mnt directory provides a convenient place for mounting
these temporary devices. You will often see the directories
/mnt/floppy and /mnt/cdrom. To see what devices and mount points
are used, type mount.

A weird kind of file...
During your tour, you probably noticed a strange kind of directory entry, particularly in the
/boot and /lib directories. When listed with ls -l, you would have seen something like
this:

lrwxrwxrwx 25 Jul 3 16:42 System.map -> /boot/System.map-2.0.36-3
-rw-r--r-- 105911 Oct 13 1998 System.map-2.0.36-0.7
-rw-r--r-- 105935 Dec 29 1998 System.map-2.0.36-3
-rw-r--r-- 181986 Dec 11 1999 initrd-2.0.36-0.7.img
-rw-r--r-- 182001 Dec 11 1999 initrd-2.0.36.img
lrwxrwxrwx 26 Jul 3 16:42 module-info -> /boot/module-info-2.0.36-3
-rw-r--r-- 11773 Oct 13 1998 module-info-2.0.36-0.7
-rw-r--r-- 11773 Dec 29 1998 module-info-2.0.36-3
lrwxrwxrwx 16 Dec 11 1999 vmlinuz -> vmlinuz-2.0.36-3
-rw-r--r-- 454325 Oct 13 1998 vmlinuz-2.0.36-0.7

http://linuxcommand.org/lts0020.php
http://linuxcommand.org/lc3_man_pages/mount8.html

1/9/2020 Learning the shell - Lesson 4: A Guided Tour

linuxcommand.org/lc3_lts0040.php 4/4

-rw-r--r-- 454434 Dec 29 1998 vmlinuz-2.0.36-3

Notice the files, System.map, module-info and vmlinuz. See the strange notation after
the file names?

These three files are called symbolic links. Symbolic links are a special type of file that points to
another file. With symbolic links, it is possible for a single file to have multiple names. Here's
how it works: Whenever the system is given a file name that is a symbolic link, it transparently
maps it to the file it is pointing to.

Just what is this good for? This is a very handy feature. Let's consider the directory listing
above (which is the /boot directory of an old Red Hat 5.2 system). This system has had
multiple versions of the Linux kernel installed. We can see this from the files vmlinuz-
2.0.36-0.7 and vmlinuz-2.0.36-3. These file names suggest that both version 2.0.36-0.7
and 2.0.36-3 are installed. Because the file names contain the version it is easy to see the
differences in the directory listing. However, this would be confusing to programs that rely on a
fixed name for the kernel file. These programs might expect the kernel to simply be called
"vmlinuz". Here is where the beauty of the symbolic link comes in. By creating a symbolic
link called vmlinuz that points to vmlinuz-2.0.36-3, we have solved the problem.

To create symbolic links, use the ln command.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/ln1.html
mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 5: Manipulating Files

linuxcommand.org/lc3_lts0050.php 1/6

Manipulating Files
This lesson will introduce you to the following commands:

cp - copy files and directories
mv - move or rename files and directories
rm - remove files and directories
mkdir - create directories

These four commands are among the most frequently used Linux commands. They are the basic
commands for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are more easily done with a
graphical file manager. With a file manager, you can drag and drop a file from one directory to
another, cut and paste files, delete files, etc. So why use these old command line programs?

The answer is power and flexibility. While it is easy to perform simple file manipulations with a
graphical file manager, complicated tasks can be easier with the command line programs. For
example, how would you copy all the HTML files from one directory to another, but only copy files
that did not exist in the destination directory or were newer than the versions in the destination
directory? Pretty hard with with a file manager. Pretty easy with the command line:

[me@linuxbox me]$ cp -u *.html destination

Wildcards
Before I begin with our commands, I want to talk about a shell feature that makes these commands
so powerful. Since the shell uses filenames so much, it provides special characters to help you
rapidly specify groups of filenames. These special characters are called wildcards. Wildcards allow
you to select filenames based on patterns of characters. The table below lists the wildcards and what
they select:

Summary of wildcards and their meanings

Wildcard Meaning

* Matches any characters

? Matches any single character

http://linuxcommand.org/lc3_man_pages/cp1.html
http://linuxcommand.org/lc3_man_pages/mv1.html
http://linuxcommand.org/lc3_man_pages/rm1.html
http://linuxcommand.org/lc3_man_pages/mkdir1.html

1/9/2020 Learning the shell - Lesson 5: Manipulating Files

linuxcommand.org/lc3_lts0050.php 2/6

[characters]

Matches any character that is a member of the set characters. The set of
characters may also be expressed as a POSIX character class such as one of
the following:

POSIX Character Classes
[:alnum:] Alphanumeric characters
[:alpha:] Alphabetic characters
[:digit:] Numerals
[:upper:] Uppercase alphabetic characters
[:lower:] Lowercase alphabetic characters

[!characters] Matches any character that is not a member of the set characters

Using wildcards, it is possible to construct very sophisticated selection criteria for filenames. Here
are some examples of patterns and what they match:

Examples of wildcard matching

Pattern Matches

* All filenames

g* All filenames that begin with the character "g"

b*.txt All filenames that begin with the character "b" and end
with the characters ".txt"

Data??? Any filename that begins with the characters "Data"
followed by exactly 3 more characters

[abc]* Any filename that begins with "a" or "b" or "c" followed
by any other characters

[[:upper:]]* Any filename that begins with an uppercase letter. This
is an example of a character class.

1/9/2020 Learning the shell - Lesson 5: Manipulating Files

linuxcommand.org/lc3_lts0050.php 3/6

BACKUP.[[:digit:]][[:digit:]]
Another example of character classes. This pattern
matches any filename that begins with the characters
"BACKUP." followed by exactly two numerals.

*[![:lower:]] Any filename that does not end with a lowercase letter.

You can use wildcards with any command that accepts filename arguments.

cp
The cp program copies files and directories. In its simplest form, it copies a single file:

[me@linuxbox me]$ cp file1 file2

It can also be used to copy multiple files (and/or directories) to a different directory:

[me@linuxbox me]$ cp file... directory

A note on notation: ... signifies that an item can be repeated one or more times.

Other useful examples of cp and its options include:

Examples of the cp command

Command Results

cp file1 file2
Copies the contents of file1 into file2. If file2 does not exist, it is
created; otherwise, file2 is silently overwritten with the contents of
file1.

cp -i file1 file2
Like above however, since the "-i" (interactive) option is specified, if
file2 exists, the user is prompted before it is overwritten with the
contents of file1.

cp file1 dir1 Copy the contents of file1 (into a file named file1) inside of directory
dir1.

1/9/2020 Learning the shell - Lesson 5: Manipulating Files

linuxcommand.org/lc3_lts0050.php 4/6

cp -R dir1 dir2
Copy the contents of the directory dir1. If directory dir2 does not exist, it
is created. Otherwise, it creates a directory named dir1 within directory
dir2.

mv
The mv command moves or renames files and directories depending on how it is used. It will either
move one or more files to a different directory, or it will rename a file or directory. To rename a file, it
is used like this:

[me@linuxbox me]$ mv filename1 filename2

To move files (and/or directories) to a different directory:

[me@linuxbox me]$ mv file... directory

Examples of mv and its options include:

Examples of the mv command

Command Results

mv file1 file2
If file2 does not exist, then file1 is renamed file2. If file2
exists, its contents are silently replaced with the
contents of file1.

mv -i file1 file2
Like above however, since the "-i" (interactive) option is
specified, if file2 exists, the user is prompted before it is
overwritten with the contents of file1.

mv file1 file2 file3 dir1 The files file1, file2, file3 are moved to directory dir1. If dir1
does not exist, mv will exit with an error.

mv dir1 dir2 If dir2 does not exist, then dir1 is renamed dir2. If dir2 exists,
the directory dir1 is moved within directory dir2.

1/9/2020 Learning the shell - Lesson 5: Manipulating Files

linuxcommand.org/lc3_lts0050.php 5/6

rm
The rm command removes (deletes) files and directories.

[me@linuxbox me]$ rm file...

It can also be used to delete directories:

[me@linuxbox me]$ rm -r directory...

Examples of rm and its options include:

Examples of the rm command

Command Results

rm file1 file2 Delete file1 and file2.

rm -i file1 file2 Like above however, since the "-i" (interactive) option is specified, the
user is prompted before each file is deleted.

rm -r dir1 dir2 Directories dir1 and dir2 are deleted along with all of their contents.

Be careful with rm!
Linux does not have an undelete command. Once you delete something with rm, it's gone. You
can inflict terrific damage on your system with rm if you are not careful, particularly with
wildcards.

Before you use rm with wildcards, try this helpful trick: construct your command using ls
instead. By doing this, you can see the effect of your wildcards before you delete files. After you
have tested your command with ls, recall the command with the up-arrow key and then
substitute rm for ls in the command.

1/9/2020 Learning the shell - Lesson 5: Manipulating Files

linuxcommand.org/lc3_lts0050.php 6/6

mkdir
The mkdir command is used to create directories. To use it, you simply type:

[me@linuxbox me]$ mkdir directory...

Using Commands with Wildcards
Since the commands we have covered here accept multiple file and directories names as
arguments, you can use wildcards to specify them. Here are a few examples:

Command examples using wildcards

Command Results

cp *.txt text_files
Copy all files in the current working directory with
names ending with the characters ".txt" to an existing
directory named text_files.

mv my_dir ../*.bak my_new_dir
Move the subdirectory my_dir and all the files ending in
".bak" in the current working directory's parent
directory to an existing directory named my_new_dir.

rm *~

Delete all files in the current working directory that end
with the character "~". Some applications create
backup files using this naming scheme. Using this
command will clean them out of a directory.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 6: Working with Commands

linuxcommand.org/lc3_lts0060.php 1/4

Working with Commands
Up until now you have seen a number of commands and their mysterious options and arguments. In this
lesson, we will try to remove some of that mystery. This lesson will introduce the following commands.

type - Display information about command type
which - Locate a command
help - Display reference page for shell builtin
man - Display an on-line command reference

What are "Commands?"
Commands can be one of 4 different kinds:

1. An executable program like all those files we saw in /usr/bin. Within this category, programs can be
compiled binaries such as programs written in C and C++, or programs written in scripting languages such
as the shell, Perl, Python, Ruby, etc.

2. A command built into the shell itself. bash provides a number of commands internally called shell
builtins. The cd command, for example, is a shell builtin.

3. A shell function. These are miniature shell scripts incorporated into the environment. We will cover
configuring the environment and writing shell functions in later lessons, but for now, just be aware that
they exist.

4. An alias. Commands that you can define yourselves, built from other commands. This will be covered in a
later lesson.

Identifying Commands
It is often useful to know exactly which of the four kinds of commands is being used and Linux provides a
couple of ways to find out.

type

The type command is a shell builtin that displays the kind of command the shell will execute, given a particular
command name. It works like this:

 type command

where “command” is the name of the command you want to examine. Here are some examples:

[me@linuxbox me]$ type type
type is a shell builtin

[me@linuxbox me]$ type ls
ls is aliased to `ls --color=tty'

[me@linuxbox me]$ type cp
cp is /bin/cp

http://linuxcommand.org/lc3_man_pages/typeh.html
http://linuxcommand.org/lc3_man_pages/which1.html
http://linuxcommand.org/lc3_man_pages/helph.html
http://linuxcommand.org/lc3_man_pages/man1.html

1/9/2020 Learning the shell - Lesson 6: Working with Commands

linuxcommand.org/lc3_lts0060.php 2/4

Here we see the results for three different commands. Notice that the one for ls (taken from a Fedora system)
and how the ls command is actually an alias for the ls command with the “-- color=tty” option added. Now we
know why the output from ls is displayed in color!

which

Sometimes there is more than one version of an executable program installed on a system. While this is not
very common on desktop systems, it's not unusual on large servers. To determine the exact location of a given
executable, the which command is used:

[me@linuxbox me]$ which ls
/bin/ls

which only works for executable programs, not builtins nor aliases that are substitutes for actual executable
programs.

Getting Command Documentation
With this knowledge of what a command is, we can now search for the documentation available for each kind of
command.

help

bash has a built-in help facility available for each of the shell builtins. To use it, type “help” followed by the
name of the shell builtin. Optionally, you may add the -m option to change the format of the output. For
example:

[me@linuxbox me]$ help -m cd

NAME
 cd - Change the shell working directory.

SYNOPSIS
 cd [-L|-P] [dir]

DESCRIPTION
 Change the shell working directory.

 Change the current directory to DIR. The default DIR is the value of the
 HOME shell variable.

 The variable CDPATH defines the search path for the directory containing
 DIR. Alternative directory names in CDPATH are separated by a colon (:).
 A null directory name is the same as the current directory. If DIR begins
 with a slash (/), then CDPATH is not used.

 If the directory is not found, and the shell option `cdable_vars' is set,
 the word is assumed to be a variable name. If that variable has a value,
 its value is used for DIR.

 Options:

1/9/2020 Learning the shell - Lesson 6: Working with Commands

linuxcommand.org/lc3_lts0060.php 3/4

 -L force symbolic links to be followed
 -P use the physical directory structure without following symbolic
 links

 The default is to follow symbolic links, as if `-L' were specified.

 Exit Status:
 Returns 0 if the directory is changed; non-zero otherwise.

SEE ALSO
 bash(1)

IMPLEMENTATION
 GNU bash, version 4.1.5(1)-release (i486-pc-linux-gnu)
 Copyright (C) 2009 Free Software Foundation, Inc.

A note on notation: When square brackets appear in the description of a command's syntax, they indicate
optional items. A vertical bar character indicates mutually exclusive items. In the case of the cd command
above:

 cd [-L|-P] [dir]

This notation says that the command cd may be followed optionally by either a “-L” or a “-P” and further,
optionally followed by the argument “dir”.

--help

Many executable programs support a “--help” option that displays a description of the command's supported
syntax and options. For example:

[me@linuxbox me]$ mkdir --help

Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

 -Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options
too.
 -m, --mode=MODE set file mode (as in chmod), not a=rwx – umask
 -p, --parents no error if existing, make parent directories as
 needed
 -v, --verbose print a message for each created directory
 --help display this help and exit
 --version output version information and exit

Some programs don't support the “--help” option, but try it anyway. Often it results in an error message that will
reveal similar usage information.

man

Most executable programs intended for command line use provide a formal piece of documentation called a
manual or man page. A special paging program called man is used to view them. It is used like this:

 man program

1/9/2020 Learning the shell - Lesson 6: Working with Commands

linuxcommand.org/lc3_lts0060.php 4/4

where “program” is the name of the command to view. Man pages vary somewhat in format but generally
contain a title, a synopsis of the command's syntax, a description of the command's purpose, and a listing and
description of each of the command's options. Man pages, however, do not usually include examples, and are
intended as a reference, not a tutorial. As an example, let's try viewing the man pagefor the ls command:

[me@linuxbox me]$ man ls

On most Linux systems, man uses less to display the manual page, so all of the familiar less commands
work while displaying the page.

README and Other Documentation Files

Many software packages installed on your system have documentation files residing in the /usr/share/doc
directory. Most of these are stored in plain text format and can be viewed with less. Some of the files are in
HTML format and can be viewed with your web browser. You may encounter some files ending with a “.gz”
extension. This indicates that they have been compressed with the gzip compression program. The gzip
package includes a special version of less called zless that will display the contents of gzip-compressed text
files.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium, provided this
copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 7: I/O Redirection

linuxcommand.org/lc3_lts0070.php 1/4

I/O Redirection
In this lesson, we will explore a powerful feature used by many command line programs called
input/output redirection. As we have seen, many commands such as ls print their output on the
display. This does not have to be the case, however. By using some special notations we can
redirect the output of many commands to files, devices, and even to the input of other commands.

Standard Output
Most command line programs that display their results do so by sending their results to a facility
called standard output. By default, standard output directs its contents to the display. To redirect
standard output to a file, the ">" character is used like this:

[me@linuxbox me]$ ls > file_list.txt

In this example, the ls command is executed and the results are written in a file named file_list.txt.
Since the output of ls was redirected to the file, no results appear on the display.

Each time the command above is repeated, file_list.txt is overwritten from the beginning with the
output of the command ls. If you want the new results to be appended to the file instead, use ">>"
like this:

[me@linuxbox me]$ ls >> file_list.txt

When the results are appended, the new results are added to the end of the file, thus making the file
longer each time the command is repeated. If the file does not exist when you attempt to append the
redirected output, the file will be created.

Standard Input
Many commands can accept input from a facility called standard input. By default, standard input
gets its contents from the keyboard, but like standard output, it can be redirected. To redirect
standard input from a file instead of the keyboard, the "<" character is used like this:

[me@linuxbox me]$ sort < file_list.txt

1/9/2020 Learning the shell - Lesson 7: I/O Redirection

linuxcommand.org/lc3_lts0070.php 2/4

In the example above, we used the sort command to process the contents of file_list.txt. The
results are output on the display since the standard output was not redirected. We could redirect
standard output to another file like this:

[me@linuxbox me]$ sort < file_list.txt > sorted_file_list.txt

As you can see, a command can have both its input and output redirected. Be aware that the order
of the redirection does not matter. The only requirement is that the redirection operators (the "<" and
">") must appear after the other options and arguments in the command.

Pipelines
The most useful and powerful thing you can do with I/O redirection is to connect multiple commands
together with what are called pipelines. With pipelines, the standard output of one command is fed
into the standard input of another. Here is my absolute favorite:

[me@linuxbox me]$ ls -l | less

In this example, the output of the ls command is fed into less. By using this "| less" trick, you
can make any command have scrolling output. I use this technique all the time.

By connecting commands together, you can acomplish amazing feats. Here are some examples
you'll want to try:

Examples of commands used together with pipelines

Command What it does

ls -lt | head Displays the 10 newest files in the current directory.

du | sort -nr Displays a list of directories and how much space they
consume, sorted from the largest to the smallest.

find . -type f -print | wc -l Displays the total number of files in the current working
directory and all of its subdirectories.

Filters

http://linuxcommand.org/lc3_man_pages/sort1.html
http://linuxcommand.org/lc3_man_pages/head1.html
http://linuxcommand.org/lc3_man_pages/du1.html
http://linuxcommand.org/lc3_man_pages/find1.html
http://linuxcommand.org/lc3_man_pages/wc1.html

1/9/2020 Learning the shell - Lesson 7: I/O Redirection

linuxcommand.org/lc3_lts0070.php 3/4

One kind of program frequently used in pipelines is called filters. Filters take standard input and
perform an operation upon it and send the results to standard output. In this way, they can be
combined to process information in powerful ways. Here are some of the common programs that can
act as filters:

Common filter commands

Program What it does

sort Sorts standard input then outputs the sorted result on standard output.

uniq Given a sorted stream of data from standard input, it removes duplicate lines of data
(i.e., it makes sure that every line is unique).

grep Examines each line of data it receives from standard input and outputs every line that
contains a specified pattern of characters.

fmt Reads text from standard input, then outputs formatted text on standard output.

pr Takes text input from standard input and splits the data into pages with page breaks,
headers and footers in preparation for printing.

head Outputs the first few lines of its input. Useful for getting the header of a file.

tail Outputs the last few lines of its input. Useful for things like getting the most recent
entries from a log file.

tr
Translates characters. Can be used to perform tasks such as upper/lowercase
conversions or changing line termination characters from one type to another (for
example, converting DOS text files into Unix style text files).

sed Stream editor. Can perform more sophisticated text translations than tr.

awk An entire programming language designed for constructing filters. Extremely
powerful.

http://linuxcommand.org/lc3_man_pages/sort1.html
http://linuxcommand.org/lc3_man_pages/uniq1.html
http://linuxcommand.org/lc3_man_pages/grep1.html
http://linuxcommand.org/lc3_man_pages/fmt1.html
http://linuxcommand.org/lc3_man_pages/pr1.html
http://linuxcommand.org/lc3_man_pages/head1.html
http://linuxcommand.org/lc3_man_pages/tail1.html
http://linuxcommand.org/lc3_man_pages/tr1.html
http://linuxcommand.org/lc3_man_pages/sed1.html
http://linuxcommand.org/lc3_man_pages/gawk1.html

1/9/2020 Learning the shell - Lesson 7: I/O Redirection

linuxcommand.org/lc3_lts0070.php 4/4

Performing tasks with pipelines
1. Printing from the command line. Linux provides a program called lpr that accepts

standard input and sends it to the printer. It is often used with pipes and filters. Here are a
couple of examples:

cat poorly_formatted_report.txt | fmt | pr | lpr

cat unsorted_list_with_dupes.txt | sort | uniq | pr | lpr

In the first example, we use cat to read the file and output it to standard output, which is
piped into the standard input of fmt. fmt formats the text into neat paragraphs and
outputs it to standard output, which is piped into the standard input of pr. pr splits the
text neatly into pages and outputs it to standard output, which is piped into the standard
input of lpr. lpr takes its standard input and sends it to the printer.

The second example starts with an unsorted list of data with duplicate entries. First, cat
sends the list into sort which sorts it and feeds it into uniq which removes any
duplicates. Next pr and lpr are used to paginate and print the list.

2. Viewing the contents of tar files Often you will see software distributed as a gzipped tar
file. This is a traditional Unix style tape archive file (created with tar) that has been
compressed with gzip. You can recognize these files by their traditional file extensions,
".tar.gz" or ".tgz". You can use the following command to view the directory of such a file
on a Linux system:

tar tzvf name_of_file.tar.gz | less

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/lpr1.html
http://linuxcommand.org/lc3_man_pages/tar1.html
http://linuxcommand.org/lc3_man_pages/gzip1.html
mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 1/10

Expansion
Each time you type a command line and press the enter key, bash performs several processes upon the text
before it carries out your command. We have seen a couple of cases of how a simple character sequence,
for example “*”, can have a lot of meaning to the shell. The process that makes this happen is called
expansion. With expansion, you type something and it is expanded into something else before the shell acts
upon it. To demonstrate what we mean by this, let's take a look at the echo command. echo is a shell builtin
that performs a very simple task. It prints out its text arguments on standard output:

[me@linuxbox me]$ echo this is a test
this is a test

That's pretty straightforward. Any argument passed to echo gets displayed. Let's try another example:

[me@linuxbox me]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

So what just happened? Why didn't echo print “*”? As you recall from our work with wildcards, the “*”
character means match any characters in a filename, but what we didn't see in our original discussion was
how the shell does that. The simple answer is that the shell expands the “*” into something else (in this
instance, the names of the files in the current working directory) before the echo command is executed.
When the enter key is pressed, the shell automatically expands any qualifying characters on the command
line before the command is carried out, so the echo command never saw the “*”, only its expanded result.
Knowing this, we can see that echo behaved as expected.

Pathname Expansion
The mechanism by which wildcards work is called pathname expansion. If we try some of the techniques that
we employed in our earlier lessons, we will see that they are really expansions. Given a home directory that
looks like this:

[me@linuxbox me]$ ls

Desktop
ls-output.txt
Documents Music
Pictures
Public
Templates
Videos

http://linuxcommand.org/lc3_man_pages/echoh.html

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 2/10

we could carry out the following expansions:

[me@linuxbox me]$ echo D*
Desktop Documents

and:

[me@linuxbox me]$ echo *s
Documents Pictures Templates Videos

or even:

[me@linuxbox me]$ echo [[:upper:]]*
Desktop Documents Music Pictures Public Templates Videos

and looking beyond our home directory:

[me@linuxbox me]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

Tilde Expansion
As you may recall from our introduction to the cd command, the tilde character (“~”) has a special meaning.
When used at the beginning of a word, it expands into the name of the home directory of the named user, or
if no user is named, the home directory of the current user:

[me@linuxbox me]$ echo ~
/home/me

If user “foo” has an account, then:

[me@linuxbox me]$ echo ~foo
/home/foo

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 3/10

Arithmetic Expansion
The shell allows arithmetic to be performed by expansion. This allow us to use the shell prompt as a
calculator:

[me@linuxbox me]$ echo $((2 + 2))
4

Arithmetic expansion uses the form:

 $((expression))

where expression is an arithmetic expression consisting of values and arithmetic operators.

Arithmetic expansion only supports integers (whole numbers, no decimals), but can perform quite a number
of different operations.

Spaces are not significant in arithmetic expressions and expressions may be nested. For example, to
multiply five squared by three:

[me@linuxbox me]$ echo $(($((5**2)) * 3))
75

Single parentheses may be used to group multiple subexpressions. With this technique, we can rewrite the
example above and get the same result using a single expansion instead of two:

[me@linuxbox me]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice the effect of integer division:

[me@linuxbox me]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2
[me@linuxbox me]$ echo with $((5%2)) left over.
with 1 left over.

Brace Expansion
Perhaps the strangest expansion is called brace expansion. With it, you can create multiple text strings from
a pattern containing braces. Here's an example:

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 4/10

[me@linuxbox me]$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a preamble and a trailing portion called
a postscript. The brace expression itself may contain either a comma-separated list of strings, or a range of
integers or single characters. The pattern may not contain embedded whitespace. Here is an example using
a range of integers:

[me@linuxbox me]$ echo Number_{1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

A range of letters in reverse order:

[me@linuxbox me]$ echo {Z..A}
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Brace expansions may be nested:

[me@linuxbox me]$ echo a{A{1,2},B{3,4}}b
aA1b aA2b aB3b aB4b

So what is this good for? The most common application is to make lists of files or directories to be created.
For example, if you were a photographer and had a large collection of images you wanted to organize into
years and months, the first thing you might do is create a series of directories named in numeric “Year-
Month” format. This way, the directory names will sort in chronological order. You could type out a complete
list of directories, but that's a lot of work and it's error-prone too. Instead, you could do this:

[me@linuxbox me]$ mkdir Photos
[me@linuxbox me]$ cd Photos
[me@linuxbox Photos]$ mkdir {2007..2009}-0{1..9} {2007..2009}-{10..12}
[me@linuxbox Photos]$ ls

2007-01 2007-07 2008-01 2008-07 2009-01 2009-07
2007-02 2007-08 2008-02 2008-08 2009-02 2009-08
2007-03 2007-09 2008-03 2008-09 2009-03 2009-09
2007-04 2007-10 2008-04 2008-10 2009-04 2009-10
2007-05 2007-11 2008-05 2008-11 2009-05 2009-11
2007-06 2007-12 2008-06 2008-12 2009-06 2009-12

Pretty slick!

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 5/10

Parameter Expansion
We're only going to touch briefly on parameter expansion in this lesson, but we'll be covering it more later. It's
a feature that is more useful in shell scripts than directly on the command line. Many of its capabilities have
to do with the system's ability to store small chunks of data and to give each chunk a name. Many such
chunks, more properly called variables, are available for your examination. For example, the variable named
“USER” contains your user name. To invoke parameter expansion and reveal the contents of USER you
would do this:

[me@linuxbox me]$ echo $USER
me

To see a list of available variables, try this:

[me@linuxbox me]$ printenv | less

You may have noticed that with other types of expansion, if you mistype a pattern, the expansion will not take
place and the echo command will simply display the mistyped pattern. With parameter expansion, if you
misspell the name of a variable, the expansion will still take place, but will result in an empty string:

[me@linuxbox me]$ echo $SUER
[me@linuxbox ~]$

Command Substitution
Command substitution allows us to use the output of a command as an expansion:

[me@linuxbox me]$ echo $(ls)
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

One of my favorites goes something like this:

[me@linuxbox me]$ ls -l $(which cp)
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the ls command, thereby getting the listing of of
the cp program without having to know its full pathname. We are not limited to just simple commands. Entire
pipelines can be used (only partial output shown):

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 6/10

[me@linuxbox me]$ file $(ls /usr/bin/* | grep bin/zip)

/usr/bin/bunzip2:
/usr/bin/zip: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, stripped
/usr/bin/zipcloak: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, stripped
/usr/bin/zipgrep: POSIX shell script text executable
/usr/bin/zipinfo: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, stripped
/usr/bin/zipnote: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, stripped
/usr/bin/zipsplit: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, stripped

In this example, the results of the pipeline became the argument list of the file command. There is an
alternate syntax for command substitution in older shell programs which is also supported in bash. It uses
back-quotes instead of the dollar sign and parentheses:

[me@linuxbox me]$ ls -l `which cp`
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Quoting
Now that we've seen how many ways the shell can perform expansions, it's time to learn how we can control
it. Take for example:

[me@linuxbox me]$ echo this is a test
this is a test

or:

[me@linuxbox me]$ [me@linuxbox ~]$ echo The total is $100.00
The total is 00.00

In the first example, word-splitting by the shell removed extra whitespace from the echo command's list of
arguments. In the second example, parameter expansion substituted an empty string for the value of “$1”
because it was an undefined variable. The shell provides a mechanism called quoting to selectively suppress
unwanted expansions.

Double Quotes

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 7/10

The first type of quoting we will look at is double quotes. If you place text inside double quotes, all the special
characters used by the shell lose their special meaning and are treated as ordinary characters. The
exceptions are “$”, “\” (backslash), and “`” (back- quote). This means that word-splitting, pathname
expansion, tilde expansion, and brace expansion are suppressed, but parameter expansion, arithmetic
expansion, and command substitution are still carried out. Using double quotes, we can cope with filenames
containing embedded spaces. Say you were the unfortunate victim of a file called two words.txt. If you tried
to use this on the command line, word-splitting would cause this to be treated as two separate arguments
rather than the desired single argument:

[me@linuxbox me]$ ls -l two words.txt

ls: cannot access two: No such file or directory
ls: cannot access words.txt: No such file or directory

By using double quotes, you can stop the word-splitting and get the desired result; further, you can even
repair the damage:

[me@linuxbox me]$ ls -l "two words.txt"
-rw-rw-r-- 1 me me 18 2008-02-20 13:03 two words.txt
[me@linuxbox me]$ mv "two words.txt" two_words.txt

There! Now we don't have to keep typing those pesky double quotes. Remember, parameter expansion,
arithmetic expansion, and command substitution still take place within double quotes:

[me@linuxbox me]$ echo "$USER $((2+2)) $(cal)"

me 4
February 2008
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29

We should take a moment to look at the effect of double quotes on command substitution. First let's look a
little deeper at how word splitting works. In our earlier example, we saw how word-splitting appears to
remove extra spaces in our text:

[me@linuxbox me]$ echo this is a test
this is a test

By default, word-splitting looks for the presence of spaces, tabs, and newlines (linefeed characters) and
treats them as delimiters between words. This means that unquoted spaces, tabs, and newlines are not

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 8/10

considered to be part of the text. They only serve as separators. Since they separate the words into different
arguments, our example command line contains a command followed by four distinct arguments. If we add
double quotes:

[me@linuxbox me]$ echo "this is a test"
this is a test

word-splitting is suppressed and the embedded spaces are not treated as delimiters, rather they become part
of the argument. Once the double quotes are added, our command line contains a command followed by a
single argument. The fact that newlines are considered delimiters by the word-splitting mechanism causes an
interesting, albeit subtle, effect on command substitution. Consider the following:

[me@linuxbox me]$ echo $(cal)
February 2008 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29
[me@linuxbox me]$ echo "$(cal)"

February 2008
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29

In the first instance, the unquoted command substitution resulted in a command line containing thirty-eight
arguments. In the second, a command line with one argument that includes the embedded spaces and
newlines.

Single Quotes
If you need to suppress all expansions, you use single quotes. Here is a comparison of unquoted, double
quotes, and single quotes:

[me@linuxbox me]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
text /home/me/ls-output.txt a b foo 4 me
[me@linuxbox me]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me
[me@linuxbox me]$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As you can see, with each succeeding level of quoting, more and more of the expansions are suppressed.

Escaping Characters

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 9/10

Sometimes you only want to quote a single character. To do this, you can precede a character with a
backslash, which in this context is called the escape character. Often this is done inside double quotes to
selectively prevent an expansion:

[me@linuxbox me]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a character in a filename. For
example, it is possible to use characters in filenames that normally have special meaning to the shell. These
would include “$”, “!”, “&”, “ “, and others. To include a special character in a filename you can to this:

[me@linuxbox me]$ mv bad\&filename good_filename

To allow a backslash character to appear, escape it by typing “\\”. Note that within single quotes, the
backslash loses its special meaning and is treated as an ordinary character.

More Backslash Tricks
If you look at the man pages for any program written by the GNU project, you will notice that in addition to
command line options consisting of a dash and a single letter, there are also long option names that begin
with two dashes. For example, the following are equivalent:

ls -r
ls --reverse

Why do they support both? The short form is for lazy typists on the command line and the long form is mostly
for scripts though some options may only be long form. I sometimes use obscure options, and I find the long
form useful if I have to review a script again months after I wrote it. Seeing the long form helps me
understand what the option does, saving me a trip to the man page. A little more typing now, a lot less work
later. Laziness is maintained.

As you might suspect, using the long form options can make a single command line very long. To combat this
problem, you can use a backslash to get the shell to ignore a newline character like this:

ls -l \
 --reverse \
 --human-readable \
 --full-time

Using the backslash in this way allows us to embed newlines in our command. Note that for this trick to work,
the newline must be typed immediately after the backslash. If you put a space after the backslash, the space

http://www.gnu.org/

1/9/2020 Learning the shell - Lesson 8: Expansion

linuxcommand.org/lc3_lts0080.php 10/10

will be ignored, not the newline. Backslashes are also used to insert special characters into our text. These
are called backslash escape characters. Here are the common ones:

Escape Character Name Possible Uses

\n newline Adding blank lines to text

\t tab Inserting horizontal tabs to text

\a alert Makes your terminal beep

\\ backslash Inserts a backslash

\f formfeed Sending this to your printer ejects the page

The use of the backslash escape characters is very common. This idea first appeared in the C programming
language. Today, the shell, C++, perl, python, awk, tcl, and many other programming languages use this
concept. Using the echo command with the -e option will allow us to demonstrate:

[me@linuxbox me]$ echo -e "Inserting several blank lines\n\n\n"
Inserting several blank lines

[me@linuxbox me]$ echo -e "Words\tseparated\tby\thorizontal\ttabs."

Words separated by horizontal tabs

[me@linuxbox me]$ echo -e "\aMy computer went \"beep\"."

My computer went "beep".

[me@linuxbox me]$ echo -e "DEL C:\\WIN2K\\LEGACY_OS.EXE"

DEL C:\WIN2K\LEGACY_OS.EXE

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium, provided this
copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 9: Permissions

linuxcommand.org/lc3_lts0090.php 1/6

Permissions
The Unix-like operating systems, such as Linux differ from other computing systems in that they are
not only multitasking but also multi-user.

What exactly does this mean? It means that more than one user can be operating the computer at
the same time. While your computer only has one keyboard and monitor, it can still be used by more
than one user. For example, if your computer is attached to a network, or the Internet, remote users
can log in via ssh (secure shell) and operate the computer. In fact, remote users can execute
graphical applications and have the output displayed on a remote computer. The X Window system
supports this.

The multi-user capability of Unix-like systems is a feature that is deeply ingrained into the design of
the operating system. If you remember the environment in which Unix was created, this makes
perfect sense. Years ago before computers were "personal," they were large, expensive, and
centralized. A typical university computer system consisted of a large mainframe computer located in
some building on campus and terminals were located throughout the campus, each connected to the
large central computer. The computer would support many users at the same time.

In order to make this practical, a method had to be devised to protect the users from each other.
After all, you could not allow the actions of one user to crash the computer, nor could you allow one
user to interfere with the files belonging to another user.

This lesson will cover the following commands:

chmod - modify file access rights
su - temporarily become the superuser
sudo - temporarily become the superuser
chown - change file ownership
chgrp - change a file's group ownership

File Permissions
On a Linux system, each file and directory is assigned access rights for the owner of the file, the
members of a group of related users, and everybody else. Rights can be assigned to read a file, to
write a file, and to execute a file (i.e., run the file as a program).

To see the permission settings for a file, we can use the ls command. As an example, we will look at
the bash program which is located in the /bin directory:

[me@linuxbox me]$ ls -l /bin/bash

-rwxr-xr-x 1 root root 316848 Feb 27 2000 /bin/bash

http://linuxcommand.org/lc3_man_pages/ssh1.html
http://linuxcommand.org/lc3_man_pages/chmod1.html
http://linuxcommand.org/lc3_man_pages/su1.html
http://linuxcommand.org/lc3_man_pages/sudo1.html
http://linuxcommand.org/lc3_man_pages/chown1.html
http://linuxcommand.org/lc3_man_pages/chgrp1.html

1/9/2020 Learning the shell - Lesson 9: Permissions

linuxcommand.org/lc3_lts0090.php 2/6

Here we can see:

The file "/bin/bash" is owned by user "root"
The superuser has the right to read, write, and execute this file
The file is owned by the group "root"
Members of the group "root" can also read and execute this file
Everybody else can read and execute this file

In the diagram below, we see how the first portion of the listing is interpreted. It consists of a
character indicating the file type, followed by three sets of three characters that convey the reading,
writing and execution permission for the owner, group, and everybody else.

chmod
The chmod command is used to change the permissions of a file or directory. To use it, you specify
the desired permission settings and the file or files that you wish to modify. There are two ways to
specify the permissions. In this lesson we will focus on one of these, called the octal notation
method.

It is easy to think of the permission settings as a series of bits (which is how the computer thinks
about them). Here's how it works:

rwx rwx rwx = 111 111 111
rw- rw- rw- = 110 110 110
rwx --- --- = 111 000 000

and so on...

1/9/2020 Learning the shell - Lesson 9: Permissions

linuxcommand.org/lc3_lts0090.php 3/6

rwx = 111 in binary = 7
rw- = 110 in binary = 6
r-x = 101 in binary = 5
r-- = 100 in binary = 4

Now, if you represent each of the three sets of permissions (owner, group, and other) as a single
digit, you have a pretty convenient way of expressing the possible permissions settings. For
example, if we wanted to set some_file to have read and write permission for the owner, but
wanted to keep the file private from others, we would:

[me@linuxbox me]$ chmod 600 some_file

Here is a table of numbers that covers all the common settings. The ones beginning with "7" are
used with programs (since they enable execution) and the rest are for other kinds of files.

Value Meaning

777 (rwxrwxrwx) No restrictions on permissions. Anybody may do anything. Generally not a
desirable setting.

755 (rwxr-xr-x) The file's owner may read, write, and execute the file. All others may read
and execute the file. This setting is common for programs that are used by all users.

700
(rwx------) The file's owner may read, write, and execute the file. Nobody else has any
rights. This setting is useful for programs that only the owner may use and must be kept
private from others.

666 (rw-rw-rw-) All users may read and write the file.

644 (rw-r--r--) The owner may read and write a file, while all others may only read the file. A
common setting for data files that everybody may read, but only the owner may change.

600 (rw-------) The owner may read and write a file. All others have no rights. A common
setting for data files that the owner wants to keep private.

1/9/2020 Learning the shell - Lesson 9: Permissions

linuxcommand.org/lc3_lts0090.php 4/6

Directory Permissions
The chmod command can also be used to control the access permissions for directories. Again, we
can use the octal notation to set permissions, but the meaning of the r, w, and x attributes is different:

r - Allows the contents of the directory to be listed if the x attribute is also set.
w - Allows files within the directory to be created, deleted, or renamed if the x attribute is also
set.
x - Allows a directory to be entered (i.e. cd dir).

Here are some useful settings for directories:

Value Meaning

777 (rwxrwxrwx) No restrictions on permissions. Anybody may list files, create new files in
the directory and delete files in the directory. Generally not a good setting.

755
(rwxr-xr-x) The directory owner has full access. All others may list the directory, but
cannot create files nor delete them. This setting is common for directories that you wish
to share with other users.

700
(rwx------) The directory owner has full access. Nobody else has any rights. This setting
is useful for directories that only the owner may use and must be kept private from
others.

Becoming the Superuser for a Short While
It is often necessary to become the superuser to perform important system administration tasks, but
as you have been warned, you should not stay logged in as the superuser. In most distributions,
there is a program that can give you temporary access to the superuser's privileges. This program is
called su (short for substitute user) and can be used in those cases when you need to be the
superuser for a small number of tasks. To become the superuser, simply type the su command. You
will be prompted for the superuser's password:

[me@linuxbox me]$ su
Password:
[root@linuxbox me]#

After executing the su command, you have a new shell session as the superuser. To exit the
superuser session, type exit and you will return to your previous session.

1/9/2020 Learning the shell - Lesson 9: Permissions

linuxcommand.org/lc3_lts0090.php 5/6

In some distributions, most notably Ubuntu, an alternate method is used. Rather than using su,
these systems employ the sudo command instead. With sudo, one or more users are granted
superuser privileges on an as needed basis. To execute a command as the superuser, the desired
command is simply preceeded with the sudo command. After the command is entered, the user is
prompted for the user's password rather than the superuser's:

[me@linuxbox me]$ sudo some_command
Password:
[me@linuxbox me]$

Changing File Ownership
You can change the owner of a file by using the chown command. Here's an example: Suppose I
wanted to change the owner of some_file from "me" to "you". I could:

[me@linuxbox me]$ su
Password:
[root@linuxbox me]# chown you some_file
[root@linuxbox me]# exit
[me@linuxbox me]$

Notice that in order to change the owner of a file, you must be the superuser. To do this, our example
employed the su command, then we executed chown, and finally we typed exit to return to our
previous session.

chown works the same way on directories as it does on files.

Changing Group Ownership
The group ownership of a file or directory may be changed with chgrp. This command is used like
this:

[me@linuxbox me]$ chgrp new_group some_file

In the example above, we changed the group ownership of some_file from its previous group to
"new_group". You must be the owner of the file or directory to perform a chgrp.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Learning the shell - Lesson 9: Permissions

linuxcommand.org/lc3_lts0090.php 6/6

1/9/2020 Learning the shell - Lesson 10: Job Control

linuxcommand.org/lc3_lts0100.php 1/5

Job Control
In the previous lesson, we looked at some of the implications of Linux being a multi-user operating
system. In this lesson, we will examine the multitasking nature of Linux, and how this is manipulated
with the command line interface.

As with any multitasking operating system, Linux executes multiple, simultaneous processes. Well,
they appear simultaneous, anyway. Actually, a single processor computer can only execute one
process at a time but the Linux kernel manages to give each process its turn at the processor and
each appears to be running at the same time.

There are several commands that can be used to control processes. They are:

ps - list the processes running on the system
kill - send a signal to one or more processes (usually to "kill" a process)
jobs - an alternate way of listing your own processes
bg - put a process in the background
fg - put a process in the forground

A Practical Example
While it may seem that this subject is rather obscure, it can be very practical for the average user
who mostly works with the graphical user interface. You might not know this, but most (if not all) of
the graphical programs can be launched from the command line. Here's an example: there is a small
program supplied with the X Window system called xload which displays a graph representing
system load. You can excute this program by typing the following:

[me@linuxbox me]$ xload

Notice that the small xload window appears and begins to display the system load graph. Notice
also that your prompt did not reappear after the program launched. The shell is waiting for the
program to finish before control returns to you. If you close the xload window, the xload program
terminates and the prompt returns.

Putting a Program into the Background
Now, in order to make life a little easier, we are going to launch the xload program again, but this
time we will put it in the background so that the prompt will return. To do this, we execute xload like
this:

http://linuxcommand.org/lc3_man_pages/ps1.html
http://linuxcommand.org/lc3_man_pages/kill1.html
http://linuxcommand.org/lc3_man_pages/jobs1.html
http://linuxcommand.org/lc3_man_pages/bg1.html
http://linuxcommand.org/lc3_man_pages/fg1.html

1/9/2020 Learning the shell - Lesson 10: Job Control

linuxcommand.org/lc3_lts0100.php 2/5

[me@linuxbox me]$ xload &
[1] 1223

[me@linuxbox me]$

In this case, the prompt returned because the process was put in the background.

Now imagine that you forgot to use the "&" symbol to put the program into the background. There is
still hope. You can type Ctrl-z and the process will be suspended. The process still exists, but is idle.
To resume the process in the background, type the bg command (short for background). Here is an
example:

[me@linuxbox me]$ xload
[2]+ Stopped xload

[me@linuxbox me]$ bg
[2]+ xload &

Listing Your Processes
Now that we have a process in the background, it would be helpful to display a list of the processes
we have launched. To do this, we can use either the jobs command or the more powerful ps
command.

[me@linuxbox me]$ jobs
[1]+ Running xload &

[me@linuxbox me]$ ps
PID TTY TIME CMD
1211 pts/4 00:00:00 bash
1246 pts/4 00:00:00 xload
1247 pts/4 00:00:00 ps

[me@linuxbox me]$

Killing a Process
Suppose that you have a program that becomes unresponsive; how do you get rid of it? You use the
kill command, of course. Let's try this out on xload. First, you need to identify the process you
want to kill. You can use either jobs or ps, to do this. If you use jobs you will get back a job
number. With ps, you are given a process id (PID). We will do it both ways:

1/9/2020 Learning the shell - Lesson 10: Job Control

linuxcommand.org/lc3_lts0100.php 3/5

[me@linuxbox me]$ xload &
[1] 1292

[me@linuxbox me]$ jobs
[1]+ Running xload &

[me@linuxbox me]$ kill %1

[me@linuxbox me]$ xload &
[2] 1293
[1] Terminated xload

[me@linuxbox me]$ ps
PID TTY TIME CMD
1280 pts/5 00:00:00 bash
1293 pts/5 00:00:00 xload
1294 pts/5 00:00:00 ps

[me@linuxbox me]$ kill 1293
[2]+ Terminated xload

[me@linuxbox me]$

A Little More About kill
While the kill command is used to "kill" processes, its real purpose is to send signals to
processes. Most of the time the signal is intended to tell the process to go away, but there is more to
it than that. Programs (if they are properly written) listen for signals from the operating system and
respond to them, most often to allow some graceful method of terminating. For example, a text editor
might listen for any signal that indicates that the user is logging off, or that the computer is shutting
down. When it receives this signal, it saves the work in progress before it exits. The kill command
can send a variety of signals to processes. Typing:

 kill -l

will give you a list of the signals it supports. Most are rather obscure, but several are useful to know:

Signal # Name Description

1 SIGHUP
Hang up signal. Programs can listen for this signal and act upon it. This
signal is sent to processes running in a terminal when you close the
terminal.

2 SIGINT
Interrupt signal. This signal is given to processes to interrupt them.

1/9/2020 Learning the shell - Lesson 10: Job Control

linuxcommand.org/lc3_lts0100.php 4/5

Programs can process this signal and act upon it. You can also issue
this signal directly by typing Ctrl-c in the terminal window where the
program is running.

15 SIGTERM
Termination signal. This signal is given to processes to terminate them.
Again, programs can process this signal and act upon it. This is the
default signal sent by the kill command if no signal is specified.

9 SIGKILL Kill signal. This signal causes the immediate termination of the process
by the Linux kernel. Programs cannot listen for this signal.

Now let's suppose that you have a program that is hopelessly hung and you want to get rid of it.
Here's what you do:

1. Use the ps command to get the process id (PID) of the process you want to terminate.
2. Issue a kill command for that PID.
3. If the process refuses to terminate (i.e., it is ignoring the signal), send increasingly harsh

signals until it does terminate.

[me@linuxbox me]$ ps x | grep bad_program
PID TTY STAT TIME COMMAND
2931 pts/5 SN 0:00 bad_program

[me@linuxbox me]$ kill -SIGTERM 2931

[me@linuxbox me]$ kill -SIGKILL 2931

In the example above I used the ps command with the x option to list all of my processes (even
those not launched from the current terminal). In addition, I piped the output of the ps command into
grep to list only list the program I was interested in. Next, I used kill to issue a SIGTERM signal to
the troublesome program. In actual practice, it is more common to do it in the following way since the
default signal sent by kill is SIGTERM and kill can also use the signal number instead of the
signal name:

[me@linuxbox me]$ kill 2931

Then, if the process does not terminate, force it with the SIGKILL signal:

[me@linuxbox me]$ kill -9 2931

1/9/2020 Learning the shell - Lesson 10: Job Control

linuxcommand.org/lc3_lts0100.php 5/5

That's It!
This concludes the "Learning the shell" series of lessons. In the next series, "Writing shell scripts,"
we will look at how to automate tasks with the shell.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 LinuxCommand.org: Writing shell scripts.

linuxcommand.org/lc3_writing_shell_scripts.php 1/1

Here is Where the Fun Begins
With the thousands of commands available for the command line user, how can you remember them
all? The answer is, you don't. The real power of the computer is its ability to do the work for you. To
get it to do that, we use the power of the shell to automate things. We write shell scripts.

What are Shell Scripts?
In the simplest terms, a shell script is a file containing a series of commands. The shell reads this file
and carries out the commands as though they have been entered directly on the command line.

The shell is somewhat unique, in that it is both a powerful command line interface to the system and
a scripting language interpreter. As we will see, most of the things that can be done on the command
line can be done in scripts, and most of the things that can be done in scripts can be done on the
command line.

We have covered many shell features, but we have focused on those features most often used
directly on the command line. The shell also provides a set of features usually (but not always) used
when writing programs.

Scripts unlock the power of your Linux machine. So let's have some fun!

Contents
1. Writing Your First Script and Getting It to Work
2. Editing the Scripts You Already Have
3. Here Scripts
4. Variables
5. Command Substitution and Constants
6. Shell Functions
7. Some Real Work
8. Flow Control - Part 1
9. Stay Out of Trouble

10. Keyboard Input and Arithmetic
11. Flow Control - Part 2
12. Positional Parameters
13. Flow Control - Part3
14. Errors and Signals and Traps (Oh My!) - Part 1
15. Errors and Signals and Traps (Oh My!) - Part 2

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_wss0010.php
http://linuxcommand.org/lc3_wss0020.php
http://linuxcommand.org/lc3_wss0030.php
http://linuxcommand.org/lc3_wss0040.php
http://linuxcommand.org/lc3_wss0050.php
http://linuxcommand.org/lc3_wss0060.php
http://linuxcommand.org/lc3_wss0070.php
http://linuxcommand.org/lc3_wss0080.php
http://linuxcommand.org/lc3_wss0090.php
http://linuxcommand.org/lc3_wss0100.php
http://linuxcommand.org/lc3_wss0110.php
http://linuxcommand.org/lc3_wss0120.php
http://linuxcommand.org/lc3_wss0130.php
http://linuxcommand.org/lc3_wss0140.php
http://linuxcommand.org/lc3_wss0150.php
mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 1: Writing your first script and getting it to work

linuxcommand.org/lc3_wss0010.php 1/4

Writing Your First Script and Getting It to Work
To successfully write a shell script, you have to do three things:

1. Write a script
2. Give the shell permission to execute it
3. Put it somewhere the shell can find it

Writing a Script
A shell script is a file that contains ASCII text. To create a shell script, you use a text editor. A text
editor is a program, like a word processor, that reads and writes ASCII text files. There are many,
many text editors available for your Linux system, both for the command line environment and the
GUI environment. Here is a list of some common ones:

Name Description Interface

vi,
vim

The granddaddy of Unix text editors, vi, is infamous for its difficult, non-
intuitive command structure. On the bright side, vi is powerful,
lightweight, and fast. Learning vi is a Unix rite of passage, since it is
universally available on Unix-like systems. On most Linux distributions,
an enhanced version of the traditional vi editor called vim is used.

command
line

Emacs The true giant in the world of text editors is Emacs by Richard Stallman.
Emacs contains (or can be made to contain) every feature ever
conceived for a text editor. It should be noted that vi and Emacs fans
fight bitter religious wars over which is better.

command
line

nano nano is a free clone of the text editor supplied with the pine email
program. nano is very easy to use but is very short on features. I
recommend nano for first-time users who need a command line editor.

command
line

gedit gedit is the editor supplied with the Gnome desktop environment. graphical

http://linuxcommand.org/lc3_man_pages/vim1.html
http://en.wikipedia.org/wiki/Richard_Stallman
http://linuxcommand.org/lc3_man_pages/nano1.html
http://linuxcommand.org/lc3_man_pages/gedit1.html

1/9/2020 Writing shell scripts - Lesson 1: Writing your first script and getting it to work

linuxcommand.org/lc3_wss0010.php 2/4

kwrite kwrite is the "advanced editor" supplied with KDE. It has syntax
highlighting, a helpful feature for programmers and script writers.

graphical

Now, fire up your text editor and type in your first script as follows:

#!/bin/bash
My first script

echo "Hello World!"

The clever among you will have figured out how to copy and paste the text into your text editor ;-)

If you have ever opened a book on programming, you would immediately recognize this as the
traditional "Hello World" program. Save your file with some descriptive name. How about
hello_world?

The first line of the script is important. This is a special clue, called a shebang, given to the shell
indicating what program is used to interpret the script. In this case, it is /bin/bash. Other scripting
languages such as Perl, awk, tcl, Tk, and python also use this mechanism.

The second line is a comment. Everything that appears after a "#" symbol is ignored by bash. As
your scripts become bigger and more complicated, comments become vital. They are used by
programmers to explain what is going on so that others can figure it out. The last line is the echo
command. This command simply prints its arguments on the display.

Setting Permissions
The next thing we have to do is give the shell permission to execute your script. This is done with the
chmod command as follows:

[me@linuxbox me]$ chmod 755 hello_world

The "755" will give you read, write, and execute permission. Everybody else will get only read and
execute permission. If you want your script to be private (i.e., only you can read and execute), use
"700" instead.

Putting It in Your Path
At this point, your script will run. Try this:

[me@linuxbox me]$./hello_world

http://linuxcommand.org/lc3_man_pages/echo1.html
http://linuxcommand.org/lc3_man_pages/chmod1.html

1/9/2020 Writing shell scripts - Lesson 1: Writing your first script and getting it to work

linuxcommand.org/lc3_wss0010.php 3/4

You should see "Hello World!" displayed. If you do not, see what directory you really saved your
script in, go there and try again.

Before we go any further, I have to stop and talk a while about paths. When you type in the name of
a command, the system does not search the entire computer to find where the program is located.
That would take a long time. You have noticed that you don't usually have to specify a complete path
name to the program you want to run, the shell just seems to know.

Well, you are right. The shell does know. Here's how: the shell maintains a list of directories where
executable files (programs) are kept, and only searches the directories in that list. If it does not find
the program after searching each directory in the list, it will issue the famous command not found
error message.

This list of directories is called your path. You can view the list of directories with the following
command:

[me@linuxbox me]$ echo $PATH

This will return a colon separated list of directories that will be searched if a specific path name is not
given when a command is attempted. In our first attempt to execute your new script, we specified a
pathname ("./") to the file.

You can add directories to your path with the following command, where directory is the name of the
directory you want to add:

[me@linuxbox me]$ export PATH=$PATH:directory

A better way would be to edit your .bash_profile or .profile file (depending on your
distribution) to include the above command. That way, it would be done automatically every time you
log in.

Most Linux distributions encourage a practice in which each user has a specific directory for the
programs he/she personally uses. This directory is called bin and is a subdirectory of your home
directory. If you do not already have one, create it with the following command:

[me@linuxbox me]$ mkdir bin

Move your script into your new bin directory and you're all set. Now you just have to type:

[me@linuxbox me]$ hello_world

1/9/2020 Writing shell scripts - Lesson 1: Writing your first script and getting it to work

linuxcommand.org/lc3_wss0010.php 4/4

and your script will run. On some distributions, most notably Ubuntu, you will need to open a new
terminal session before your newly created bin directory will be recognised.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 2: Editing the scripts you already have

linuxcommand.org/lc3_wss0020.php 1/4

Editing the Scripts You Already Have
Before we get to writing new scripts, I want to point out that you have some scripts of your own
already. These scripts were put into your home directory when your account was created, and are
used to configure the behavior of your sessions on the computer. You can edit these scripts to
change things.

In this lesson, we will look at a couple of these scripts and learn a few important new concepts about
the shell.

During your session, the system is holding a number of facts about the world in its memory. This
information is called the environment. The environment contains such things as your path, your user
name, the name of the file where your mail is delivered, and much more. You can see a complete list
of what is in your environment with the set command.

Two types of commands are often contained in the environment. They are aliases and shell
functions.

How is the Environment Established?
When you log on to the system, the bash program starts, and reads a series of configuration scripts
called startup files. These define the default environment shared by all users. This is followed by
more startup files in your home directory that define your personal environment. The exact sequence
depends on the type of shell session being started. There are two kinds: a login shell session and a
non-login shell session. A login shell session is one in which we are prompted for our user name and
password; when we start a virtual console session, for example. A non-login shell session typically
occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files as shown below:

File Contents

/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user's personal startup file. Can be used to extend or override settings
in the global configuration script.

~/.bash_login If ~/.bash_profile is not found, bash attempts to read this script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login is found, bash
attempts to read this file. This is the default in Debian-based distributions,
such as Ubuntu.

http://linuxcommand.org/lc3_man_pages/seth.html

1/9/2020 Writing shell scripts - Lesson 2: Editing the scripts you already have

linuxcommand.org/lc3_wss0020.php 2/4

Non-login shell sessions read the following startup files:

File Contents

/etc/bash.bashrc A global configuration script that applies to all users.

~/.bashrc A user's personal startup file. Can be used to extend or override settings
in the global configuration script.

In addition to reading the startup files above, non-login shells also inherit the environment from their
parent process, usually a login shell.

Take a look at your system and see which of these startup files you have. Remember— since most
of the file names listed above start with a period (meaning that they are hidden), you will need to use
the “-a” option when using ls.

The ~/.bashrc file is probably the most important startup file from the ordinary user’s point of view,
since it is almost always read. Non-login shells read it by default and most startup files for login
shells are written in such a way as to read the ~/.bashrc file as well.

If we take a look inside a typical .bash_profile (this one taken from a CentOS 4 system), it looks
something like this:

.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/bin
export PATH

Lines that begin with a “#” are comments and are not read by the shell. These are there for human
readability. The first interesting thing occurs on the fourth line, with the following code:

if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

This is called an if compound command, which we will cover fully in a later lesson, but for now I will
translate:

If the file "~/.bashrc" exists, then read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of .bashrc. The next thing in
our startup file does is set set PATH variable to add the ~/bin directory to the path.

Lastly, we have:

export PATH

1/9/2020 Writing shell scripts - Lesson 2: Editing the scripts you already have

linuxcommand.org/lc3_wss0020.php 3/4

The export command tells the shell to make the contents of PATH available to child processes of
this shell.

Aliases
An alias is an easy way to create a new command which acts as an abbreviation for a longer one. It
has the following syntax:

alias name=value

where name is the name of the new command and value is the text to be executed whenever name
is entered on the command line.

Let's create an alias called "l" and make it an abbreviation for the command "ls -l". Make sure you
are in your home directory. Using your favorite text editor, open the file .bashrc and add this line to
the end of the file:

alias l='ls -l'

By adding the alias command to the file, we have created a new command called "l" which will
perform "ls -l". To try out your new command, close your terminal session and start a new one. This
will reload the .bashrc file. Using this technique, you can create any number of custom commands
for yourself. Here is another one for you to try:

alias today='date +"%A, %B %-d, %Y"'

This alias creates a new command called "today" that will display today's date with nice formatting.

By the way, the alias command is just another shell builtin. You can create your aliases directly at
the command prompt; however they will only remain in effect during your current shell session. For
example:

[me@linuxbox me]$ alias l='ls -l'

Shell Functions
Aliases are good for very simple commands, but if you want to create something more complex, you
should try shell functions . Shell functions can be thought of as "scripts within scripts" or little sub-
scripts. Let's try one. Open .bashrc with your text editor again and replace the alias for "today" with
the following:

today() {
 echo -n "Today's date is: "
 date +"%A, %B %-d, %Y"

http://linuxcommand.org/lc3_man_pages/exporth.html
http://linuxcommand.org/lc3_man_pages/aliash.html

1/9/2020 Writing shell scripts - Lesson 2: Editing the scripts you already have

linuxcommand.org/lc3_wss0020.php 4/4

}

Believe it or not, () is a shell builtin too, and as with alias, you can enter shell functions directly at
the command prompt.

[me@linuxbox me]$ today() {
> echo -n "Today's date is: "
> date +"%A, %B %-d, %Y"
> }
[me@linuxbox me]$

However, again like alias, shell functions defined directly on the command line only last as long as
the current shell session.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/functionh.html
mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 3: Here Scripts

linuxcommand.org/lc3_wss0030.php 1/4

Here Scripts
Beginning with this lesson, we will construct a useful application. This application will produce an
HTML document that contains information about your system. I spent a lot of time thinking about
how to teach shell programming, and the approach I have chosen is very different from most others
that I have seen. Most favor a systematic treatment of shell features, and often presume experience
with other programming languages. Although I do not assume that you already know how to
program, I realize that many people today know how to write HTML, so our program will produce a
web page. As we construct our script, we will discover step by step the tools needed to solve the
problem at hand.

Writing an HTML File with a Script
As you may know, a well formed HTML file contains the following content:

<html>
<head>
 <title>
 The title of your page
 </title>
</head>

<body>
 Your page content goes here.
</body>
</html>

Now, with what we already know, we could write a script to produce the above content:

#!/bin/bash

sysinfo_page - A script to produce an html file

echo "<html>"
echo "<head>"
echo " <title>"
echo " The title of your page"
echo " </title>"
echo "</head>"
echo ""

1/9/2020 Writing shell scripts - Lesson 3: Here Scripts

linuxcommand.org/lc3_wss0030.php 2/4

echo "<body>"
echo " Your page content goes here."
echo "</body>"
echo "</html>"

This script can be used as follows:

[me@linuxbox me]$ sysinfo_page > sysinfo_page.html

It has been said that the greatest programmers are also the laziest. They write programs to save
themselves work. Likewise, when clever programmers write programs, they try to save themselves
typing.

The first improvement to this script will be to replace the repeated use of the echo command with a
single instance by using quotation more efficiently:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

echo "<html>
 <head>
 <title>
 The title of your page
 </title>
 </head>

 <body>
 Your page content goes here.
 </body>
 </html>"

Using quotation, it is possible to embed carriage returns in our text and have the echo command's
argument span multiple lines.

While this is certainly an improvement, it does have a limitation. Since many types of markup used in
html incorporate quotation marks themselves, it makes using a quoted string a little awkward. A
quoted string can be used but each embedded quotation mark will need to be escaped with a
backslash character.

In order to avoid the additional typing, we need to look for a better way to produce our text.
Fortunately, the shell provides one. It's called a here script.

1/9/2020 Writing shell scripts - Lesson 3: Here Scripts

linuxcommand.org/lc3_wss0030.php 3/4

#!/bin/bash

sysinfo_page - A script to produce an HTML file

cat << _EOF_
<html>
<head>
 <title>
 The title of your page
 </title>
</head>

<body>
 Your page content goes here.
</body>
</html>
EOF

A here script (also sometimes called a here document) is an additional form of I/O redirection. It
provides a way to include content that will be given to the standard input of a command. In the case
of the script above, the standard input of the cat command was given a stream of text from our
script.

A here script is constructed like this:

command << token
content to be used as command's standard input
token

token can be any string of characters. I use "_EOF_" (EOF is short for "End Of File") because it is
traditional, but you can use anything, as long as it does not conflict with a bash reserved word. The
token that ends the here script must exactly match the one that starts it, or else the remainder of
your script will be interpreted as more standard input to the command.

There is one additional trick that can be used with a here script. Often you will want to indent the
content portion of the here script to improve the readability of your script. You can do this if you
change the script as follows:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

cat <<- _EOF_
 <html>
 <head>

http://linuxcommand.org/lc3_lts0070.php

1/9/2020 Writing shell scripts - Lesson 3: Here Scripts

linuxcommand.org/lc3_wss0030.php 4/4

 <title>
 The title of your page
 </title>
 </head>

 <body>
 Your page content goes here.
 </body>
 </html>
EOF

Changing the the "<<" to "<<-" causes bash to ignore the leading tabs (but not spaces) in the here
script. The output from the cat command will not contain any of the leading tab characters.

O.k., let's make our page. We will edit our page to get it to say something:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

cat <<- _EOF_
 <html>
 <head>
 <title>
 My System Information
 </title>
 </head>

 <body>
 <h1>My System Information</h1>
 </body>
 </html>
EOF

In our next lesson, we will make our script produce real information about the system.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 4: Variables

linuxcommand.org/lc3_wss0040.php 1/3

Variables

#!/bin/bash

sysinfo_page - A script to produce an HTML file

cat <<- _EOF_
 <html>
 <head>
 <title>
 My System Information
 </title>
 </head>

 <body>
 <h1>My System Information</h1>
 </body>
 </html>
EOF

Now that we have our script working, let's improve it. First off, we'll make some changes because we
want to be lazy. In the script above, we see that the phrase "My System Information" is repeated.
This is wasted typing (and extra work!) so we improve it like this:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

title="My System Information"

cat <<- _EOF_
 <html>
 <head>
 <title>
 $title
 </title>
 </head>

 <body>
 <h1>$title</h1>

1/9/2020 Writing shell scripts - Lesson 4: Variables

linuxcommand.org/lc3_wss0040.php 2/3

 </body>
 </html>
EOF

As you can see, we added a line to the beginning of the script and replaced the two occurrences of
the phrase "My System Information" with $title.

Variables
What we have done is to introduce a very fundamental idea that appears in almost every
programming language, variables. Variables are areas of memory that can be used to store
information and are referred to by a name. In the case of our script, we created a variable called
"title" and placed the phrase "My System Information" into memory. Inside the here script that
contains our HTML, we use "$title" to tell the shell to perform parameter expansion and replace the
name of the variable with the variable's contents.

Whenever the shell sees a word that begins with a "$", it tries to find out what was assigned to the
variable and substitutes it.

How to Create a Variable
To create a variable, put a line in your script that contains the name of the variable followed
immediately by an equal sign ("="). No spaces are allowed. After the equal sign, assign the
information you wish to store.

Where Do Variable Names Come From?
You make them up. That's right; you get to choose the names for your variables. There are a few
rules.

1. Names must start with a letter.
2. A name must not contain embedded spaces. Use underscores instead.
3. You cannot use punctuation marks.

How Does This Increase Our Laziness?
The addition of the title variable made our life easier in two ways. First, it reduced the amount of
typing we had to do. Second and more importantly, it made our script easier to maintain.

As you write more and more scripts (or do any other kind of programming), you will learn that
programs are rarely ever finished. They are modified and improved by their creators and others.
After all, that's what open source development is all about. Let's say that you wanted to change the
phrase "My System Information" to "Linuxbox System Information." In the previous version of the
script, you would have had to change this in two locations. In the new version with the title
variable, you only have to change it in one place. Since our script is so small, this might seem like a
trivial matter, but as scripts get larger and more complicated, it becomes very important.

Environment Variables

1/9/2020 Writing shell scripts - Lesson 4: Variables

linuxcommand.org/lc3_wss0040.php 3/3

When you start your shell session, some variables are already set by the startup file we looked at
earlier. To see all the variables that are in your environment, use the printenv command. One
variable in your environment contains the host name for your system. We will add this variable to our
script like so:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

title="System Information for"

cat <<- _EOF_
 <html>
 <head>
 <title>
 $title $HOSTNAME
 </title>
 </head>

 <body>
 <h1>$title $HOSTNAME</h1>
 </body>
 </html>
EOF

Now our script will always include the name of the machine on which we are running. Note that, by
convention, environment variables names are uppercase.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 5: Command Substitution and Constants

linuxcommand.org/lc3_wss0050.php 1/3

Command Substitution and Constants
In the previous lesson, we learned how to create variables and perform expansions with them. In this
lesson, we will extend this idea to show how we can substitute the results from a command.

When we last left our script, it could create an HTML page that contained a few simple lines of text,
including the host name of the machine which we obtained from the environment variable
HOSTNAME. Now, we will add a time stamp to the page to indicate when it was last updated, along
with the user that did it.

#!/bin/bash

sysinfo_page - A script to produce an HTML file

title="System Information for"

cat <<- _EOF_
 <html>
 <head>
 <title>
 $title $HOSTNAME
 </title>
 </head>

 <body>
 <h1>$title $HOSTNAME</h1>
 <p>Updated on $(date +"%x %r %Z") by $USER</p>
 </body>
 </html>
EOF

As you can see, we employed another environment variable, USER, to get the user name. In
addition, we used this strange looking thing:

$(date +"%x %r %Z")

The characters "$()" tell the shell, "substitute the results of the enclosed command." In our script, we
want the shell to insert the results of the command date +"%x %r %Z" which expresses the
current date and time. The date command has many features and formatting options. To look at
them all, try this:

http://linuxcommand.org/lc3_man_pages/date1.html

1/9/2020 Writing shell scripts - Lesson 5: Command Substitution and Constants

linuxcommand.org/lc3_wss0050.php 2/3

[me@linuxbox me]$ date --help | less

Be aware that there is an older, alternate syntax for "$(command)" that uses the backtick character "
` ". This older form is compatible with the original Bourne shell (sh). I tend not to use the older form
since I am teaching modern bash here, not sh, and besides, I think backticks are ugly. The bash
shell fully supports scripts written for sh, so the following forms are equivalent:

$(command)
`command`

Assigning a Command's Result to a Variable
You can also assign the results of a command to a variable:

right_now=$(date +"%x %r %Z")

You can even nest the variables (place one inside another), like this:

right_now=$(date +"%x %r %Z")
time_stamp="Updated on $right_now by $USER"

Constants
As the name variable suggests, the content of a variable is subject to change. This means that it is
expected that during the execution of your script, a variable may have its content modified by
something you do.

On the other hand, there may be values that, once set, should never be changed. These are called
constants. I bring this up because it is a common idea in programming. Most programming
languages have special facilities to support values that are not allowed to change. Bash also has
these facilities but, to be honest, I never see it used. Instead, if a value is intended to be a constant,
it is given an uppercase name to remind the programmer that it should be considered a constant
even if it's not being enforced.

Environment variables are usually considered constants since they are rarely changed. Like
constants, environment variables are given uppercase names by convention. In the scripts that
follow, I will use this convention - uppercase names for constants and lowercase names for
variables.

So with everything we know, our program looks like this:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

title="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

cat <<- _EOF_

1/9/2020 Writing shell scripts - Lesson 5: Command Substitution and Constants

linuxcommand.org/lc3_wss0050.php 3/3

 <html>
 <head>
 <title>
 $title
 </title>
 </head>

 <body>
 <h1>$title</h1>
 <p>$TIME_STAMP</p>
 </body>
 </html>
EOF

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 6: Shell Functions

linuxcommand.org/lc3_wss0060.php 1/6

Shell Functions
As programs get longer and more complex, they become more difficult to design, code, and
maintain. As with any large endeavor, it is often useful to break a single, large task into a series of
smaller tasks.

In this lesson, we will begin to break our single monolithic script into a number of separate functions.

To get familiar with this idea, let's consider the description of an everyday task -- going to the market
to buy food. Imagine that we were going to describe the task to a man from Mars.

Our first top-level description might look like this:

1. Leave house
2. Drive to market
3. Park car
4. Enter market
5. Purchase food
6. Drive home
7. Park car
8. Enter house

This description covers the overall process of going to the market; however a man from Mars will
probably require additional detail. For example, the "Park car" sub task could be described as
follows:

1. Find parking space
2. Drive car into space
3. Turn off motor
4. Set parking brake
5. Exit car
6. Lock car

Of course the task "Turn off motor" has a number of steps such as "turn off ignition" and "remove key
from ignition switch," and so on.

This process of identifying the top-level steps and developing increasingly detailed views of those
steps is called top-down design. This technique allows you to break large complex tasks into many
small, simple tasks.

As our script continues to grow, we will use top down design to help us plan and code our script.

If we look at our script's top-level tasks, we find the following list:

1. Open page
2. Open head section
3. Write title

1/9/2020 Writing shell scripts - Lesson 6: Shell Functions

linuxcommand.org/lc3_wss0060.php 2/6

4. Close head section
5. Open body section
6. Write title
7. Write time stamp
8. Close body section
9. Close page

All of these tasks are implemented, but we want to add more. Let's insert some additional tasks after
task 7:

7. Write time stamp
8. Write system release info
9. Write up-time

10. Write drive space
11. Write home space
12. Close body section
13. Close page

It would be great if there were commands that performed these additional tasks. If there were, we
could use command substitution to place them in our script like so:

#!/bin/bash

sysinfo_page - A script to produce a system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>

 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

1/9/2020 Writing shell scripts - Lesson 6: Shell Functions

linuxcommand.org/lc3_wss0060.php 3/6

While there are no commands that do exactly what we need, we can create them using shell
functions.

As we learned in lesson 2, shell functions act as "little programs within programs" and allow us to
follow top-down design principles. To add the shell functions to our script, we change it so:

#!/bin/bash

sysinfo_page - A script to produce an system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

system_info()
{

}

show_uptime()
{

}

drive_space()
{

}

home_space()
{

}

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>

 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>

1/9/2020 Writing shell scripts - Lesson 6: Shell Functions

linuxcommand.org/lc3_wss0060.php 4/6

 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

A couple of important points about functions: First, they must appear before you attempt to use
them. Second, the function body (the portions of the function between the { and } characters) must
contain at least one valid command. As written, the script will not execute without error, because the
function bodies are empty. The simple way to fix this is to place a return statement in each function
body. After you do this, our script will execute successfully again.

Keep Your Scripts Working
When you are developing a program, it is is often a good practice to add a small amount of code, run
the script, add some more code, run the script, and so on. This way, if you introduce a mistake into
your code, it will be easier to find and correct.

As you add functions to your script, you can also use a technique called stubbing to help watch the
logic of your script develop. Stubbing works like this: imagine that we are going to create a function
called "system_info" but we haven't figured out all of the details of its code yet. Rather than hold up
the development of the script until we are finished with system_info, we just add an echo command
like this:

system_info()
{
 # Temporary function stub
 echo "function system_info"
}

This way, our script will still execute successfully, even though we do not yet have a finished
system_info function. We will later replace the temporary stubbing code with the complete working
version.

The reason we use an echo command is so we get some feedback from the script to indicate that
the functions are being executed.

Let's go ahead and write stubs for our new functions and keep the script working.

#!/bin/bash

sysinfo_page - A script to produce an system information HTML file

1/9/2020 Writing shell scripts - Lesson 6: Shell Functions

linuxcommand.org/lc3_wss0060.php 5/6

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

system_info()
{
 # Temporary function stub
 echo "function system_info"
}

show_uptime()
{
 # Temporary function stub
 echo "function show_uptime"
}

drive_space()
{
 # Temporary function stub
 echo "function drive_space"
}

home_space()
{
 # Temporary function stub
 echo "function home_space"
}

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>

 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>

1/9/2020 Writing shell scripts - Lesson 6: Shell Functions

linuxcommand.org/lc3_wss0060.php 6/6

EOF

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 8: Some Real Work

linuxcommand.org/lc3_wss0070.php 1/3

Some Real Work
In this lesson, we will develop some of our shell functions and get our script to produce some useful
information.

show_uptime
The show_uptime function will display the output of the uptime command. The uptime command
outputs several interesting facts about the system, including the length of time the system has been
"up" (running) since its last re-boot, the number of users and recent system load.

[me@linuxbox me]$ uptime
9:15pm up 2 days, 2:32, 2 users, load average: 0.00, 0.00, 0.00

To get the output of the uptime command into our HTML page, we will code our shell function like
this, replacing our temporary stubbing code with the finished version:

show_uptime()
{
 echo "<h2>System uptime</h2>"
 echo "<pre>"
 uptime
 echo "</pre>"
}

As you can see, this function outputs a stream of text containing a mixture of HTML tags and
command output. When the command substitution takes place in the main body of the our program,
the output from our function becomes part of the here script.

drive_space
The drive_space function will use the df command to provide a summary of the space used by all of
the mounted file systems.

[me@linuxbox me]$ df

http://linuxcommand.org/lc3_man_pages/uptime1.html
http://linuxcommand.org/lc3_man_pages/df1.html

1/9/2020 Writing shell scripts - Lesson 8: Some Real Work

linuxcommand.org/lc3_wss0070.php 2/3

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda2 509992 225772 279080 45% /
/dev/hda1 23324 1796 21288 8% /boot
/dev/hda3 15739176 1748176 13832360 12% /home
/dev/hda5 3123888 3039584 52820 99% /usr

In terms of structure, the drive_space function is very similar to the show_uptime function:

drive_space()
{
 echo "<h2>Filesystem space</h2>"
 echo "<pre>"
 df
 echo "</pre>"
}

home_space
The home_space function will display the amount of space each user is using in his/her home
directory. It will display this as a list, sorted in descending order by the amount of space used.

home_space()
{
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
}

Note that in order for this function to successfully execute, the script must be run by the superuser,
since the du command requires superuser privileges to examine the contents of the /home directory.

system_info
We're not ready to finish the system_info function yet. In the meantime, we will improve the stubbing
code so it produces valid HTML:

http://linuxcommand.org/lc3_man_pages/du1.html

1/9/2020 Writing shell scripts - Lesson 8: Some Real Work

linuxcommand.org/lc3_wss0070.php 3/3

system_info()
{
 echo "<h2>System release info</h2>"
 echo "<p>Function not yet implemented</p>"
}

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 1/7

Flow Control - Part 1
In this lesson, we will look at how to add intelligence to our scripts. So far, our project script has only
consisted of a sequence of commands that starts at the first line and continues line by line until it
reaches the end. Most programs do much more than this. They make decisions and perform different
actions depending on conditions.

The shell provides several commands that we can use to control the flow of execution in our
program. In this lesson, we will look at the following:

if
test
exit

if
The first command we will look at is if. The if command is fairly simple on the surface; it makes a
decision based on the exit status of a command. The if command's syntax looks like this:

The if statement has the following syntax:

if commands; then
commands
[elif commands; then
commands...]
[else
commands]
fi

where commands is a list of commands. This is a little confusing at first glance. But before we can
clear this up, we have to look at how the shell evaluates the success or failure of a command.

Exit Status
Commands (including the scripts and shell functions we write) issue a value to the system when they
terminate, called an exit status. This value, which is an integer in the range of 0 to 255, indicates the
success or failure of the command’s execution. By convention, a value of zero indicates success and
any other value indicates failure. The shell provides a parameter that we can use to examine the exit
status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0

http://linuxcommand.org/lc3_man_pages/ifh.html
http://linuxcommand.org/lc3_man_pages/testh.html
http://linuxcommand.org/lc3_man_pages/exith.html

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 2/7

[me@linuxbox ~]$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

In this example, we execute the ls command twice. The first time, the command executes
successfully. If we display the value of the parameter $?, we see that it is zero. We execute the ls
command a second time, producing an error and examine the parameter $? again. This time it
contains a 2, indicating that the command encountered an error. Some commands use different exit
status values to provide diagnostics for errors, while many commands simply exit with a value of one
when they fail. Man pages often include a section entitled “Exit Status,” describing what codes are
used. However, a zero always indicates success.

The shell provides two extremely simple builtin commands that do nothing except terminate with
either a zero or one exit status. The true command always executes successfully and the false
command always executes unsuccessfully:

[me@linuxbox~]$ true
[me@linuxbox~]$ echo $?
0
[me@linuxbox~]$ false
[me@linuxbox~]$ echo $?
1

We can use these commands to see how the if statement works. What the if statement really
does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command following if executes
successfully, and is not executed when the command following if does not execute successfully.

test
The test command is used most often with the if command to perform true/false decisions. The
command is unusual in that it has two different syntactic forms:

First form

test expression

Second form

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 3/7

[expression]

The test command works simply. If the given expression is true, test exits with a status of zero;
otherwise it exits with a status of 1.

The neat feature of test is the variety of expressions you can create. Here is an example:

if [-f .bash_profile]; then
 echo "You have a .bash_profile. Things are fine."
else
 echo "Yikes! You have no .bash_profile!"
fi

In this example, we use the expression " -f .bash_profile ". This expression asks, "Is
.bash_profile a file?" If the expression is true, then test exits with a zero (indicating true) and the if
command executes the command(s) following the word then. If the expression is false, then test
exits with a status of one and the if command executes the command(s) following the word else.

Here is a partial list of the conditions that test can evaluate. Since test is a shell builtin, use
"help test" to see a complete list.

Expression Description

-d file True if file is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file.

-L file True if file is a symbolic link.

-r file True if file is a file readable by you.

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 4/7

-w file True if file is a file writable by you.

-x file True if file is a file executable by you.

file1 -nt file2 True if file1 is newer than (according to modification time) file2

file1 -ot file2 True if file1 is older than file2

-z string True if string is empty.

-n string True if string is not empty.

string1 = string2 True if string1 equals string2.

string1 != string2 True if string1 does not equal string2.

Before we go on, I want to explain the rest of the example above, since it also reveals more
important ideas.

In the first line of the script, we see the if command followed by the test command, followed by a
semicolon, and finally the word then. I chose to use the [expression] form of the test
command since most people think it's easier to read. Notice that the spaces required between the "
[" and the beginning of the expression are required. Likewise, the space between the end of the
expression and the trailing "]".

The semicolon is a command separator. Using it allows you to put more than one command on a
line. For example:

[me@linuxbox me]$ clear; ls

will clear the screen and execute the ls command.

I use the semicolon as I did to allow me to put the word then on the same line as the if command,
because I think it is easier to read that way.

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 5/7

On the second line, there is our old friend echo. The only thing of note on this line is the indentation.
Again for the benefit of readability, it is traditional to indent all blocks of conditional code; that is, any
code that will only be executed if certain conditions are met. The shell does not require this; it is
done to make the code easier to read.

In other words, we could write the following and get the same results:

Alternate form

if [-f .bash_profile]
then
 echo "You have a .bash_profile. Things are fine."
else
 echo "Yikes! You have no .bash_profile!"
fi

Another alternate form

if [-f .bash_profile]
then echo "You have a .bash_profile. Things are fine."
else echo "Yikes! You have no .bash_profile!"
fi

exit
In order to be good script writers, we must set the exit status when our scripts finish. To do this, use
the exit command. The exit command causes the script to terminate immediately and set the exit
status to whatever value is given as an argument. For example:

exit 0

exits your script and sets the exit status to 0 (success), whereas

exit 1

exits your script and sets the exit status to 1 (failure).

Testing for Root

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 6/7

When we last left our script, we required that it be run with superuser privileges. This is because the
home_space function needs to examine the size of each user's home directory, and only the
superuser is allowed to do that.

But what happens if a regular user runs our script? It produces a lot of ugly error messages. What if
we could put something in the script to stop it if a regular user attempts to run it?

The id command can tell us who the current user is. When executed with the "-u" option, it prints the
numeric user id of the current user.

[me@linuxbox me]$ id -u
501
[me@linuxbox me]$ su
Password:
[root@linuxbox me]# id -u
0

If the superuser executes id -u, the command will output "0." This fact can be the basis of our test:

if [$(id -u) = "0"]; then
 echo "superuser"
fi

In this example, if the output of the command id -u is equal to the string "0", then print the string
"superuser."

While this code will detect if the user is the superuser, it does not really solve the problem yet. We
want to stop the script if the user is not the superuser, so we will code it like so:

if [$(id -u) != "0"]; then
 echo "You must be the superuser to run this script" >&2
 exit 1
fi

With this code, if the output of the id -u command is not equal to "0", then the script prints a
descriptive error message, exits, and sets the exit status to 1, indicating to the operating system that
the script executed unsuccessfully.

Notice the ">&2" at the end of the echo command. This is another form of I/O direction. You will
often notice this in routines that display error messages. If this redirection were not done, the error
message would go to standard output. With this redirection, the message is sent to standard error.

http://linuxcommand.org/lc3_man_pages/id1.html

1/9/2020 Writing shell scripts - Lesson 8: Flow Control - Part 1

linuxcommand.org/lc3_wss0080.php 7/7

Since we are executing our script and redirecting its standard output to a file, we want the error
messages separated from the normal output.

We could put this routine near the beginning of our script so it has a chance to detect a possible
error before things get under way, but in order to run this script as an ordinary user, we will use the
same idea and modify the home_space function to test for proper privileges instead, like so:

function home_space
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

This way, if an ordinary user runs the script, the troublesome code will be passed over, rather than
executed and the problem will be solved.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 9: Stay Out Of Trouble

linuxcommand.org/lc3_wss0090.php 1/5

Stay Out of Trouble
Now that our scripts are getting a little more complicated, I want to point out some common mistakes
that you might run into. To do this, create the following script called trouble.bash. Be sure to enter
it exactly as written.

#!/bin/bash

number=1

if [$number = "1"]; then
 echo "Number equals 1"
else
 echo "Number does not equal 1"
fi

When you run this script, it should output the line "Number equals 1" because, well, number equals
1. If you don't get the expected output, check your typing; you made a mistake.

Empty Variables
Edit the script to change line 3 from:

number=1

to:

number=

and run the script again. This time you should get the following:

1/9/2020 Writing shell scripts - Lesson 9: Stay Out Of Trouble

linuxcommand.org/lc3_wss0090.php 2/5

[me@linuxbox me]$./trouble.bash
/trouble.bash: [: =: unary operator expected.
Number does not equal 1

As you can see, bash displayed an error message when we ran the script. You probably think that
by removing the "1" on line 3 it created a syntax error on line 3, but it didn't. Let's look at the error
message again:

./trouble.bash: [: =: unary operator expected

We can see that ./trouble.bash is reporting the error and the error has to do with "[".
Remember that "[" is an abbreviation for the test shell builtin. From this we can determine that the
error is occurring on line 5 not line 3.

First, let me say there is nothing wrong with line 3. number= is perfectly good syntax. You will
sometimes want to set a variable's value to nothing. You can confirm the validity of this by trying it on
the command line:

[me@linuxbox me]$ number=
[me@linuxbox me]$

See, no error message. So what's wrong with line 5? It worked before.

To understand this error, we have to see what the shell sees. Remember that the shell spends a lot
of its life expanding text. In line 5, the shell expands the value of number where it sees $number. In
our first try (when number=1), the shell substituted 1 for $number like so:

if [1 = "1"]; then

However, when we set number to nothing (number=), the shell saw this after the expansion:

if [= "1"]; then

which is an error. It also explains the rest of the error message we received. The "=" is a binary
operator; that is, it expects two items to operate upon - one on each side. What the shell is trying to

1/9/2020 Writing shell scripts - Lesson 9: Stay Out Of Trouble

linuxcommand.org/lc3_wss0090.php 3/5

tell us is that there is only one item and there should be a unary operator (like "!") that only operates
on a single item.

To fix this problem, change line 5 to read:

if ["$number" = "1"]; then

Now when the shell performs the expansion it will see:

if ["" = "1"]; then

which correctly expresses our intent.

This brings up an important thing to remember when you are writing your scripts. Consider what
happens if a variable is set to equal nothing.

Missing Quotes
Edit line 6 to remove the trailing quote from the end of the line:

 echo "Number equals 1

and run the script again. You should get this:

[me@linuxbox me]$./trouble.bash
./trouble.bash: line 8: unexpected EOF while looking for matching "
./trouble.bash: line 10 syntax error: unexpected end of file

Here we have another case of a mistake in one line causing a problem later in the script. What
happens is the shell keeps looking for the closing quotation mark to tell it where the end of the string
is, but runs into the end of the file before it finds it.

These errors can be a real pain to find in a long script. This is one reason you should test your
scripts frequently when you are writing them so there is less new code to test. I also find that text
editors with syntax highlighting make these kinds of bugs easier to find.

1/9/2020 Writing shell scripts - Lesson 9: Stay Out Of Trouble

linuxcommand.org/lc3_wss0090.php 4/5

Isolating Problems
Finding bugs in your programs can sometimes be very difficult and frustrating. Here are a couple of
techniques that you will find useful:

Isolate blocks of code by "commenting them out." This trick involves putting comment characters
at the beginning of lines of code to stop the shell from reading them. Frequently, you will do this to a
block of code to see if a particular problem goes away. By doing this, you can isolate which part of a
program is causing (or not causing) a problem.

For example, when we were looking for our missing quotation we could have done this:

#!/bin/bash

number=1

if [$number = "1"]; then
 echo "Number equals 1
#else
echo "Number does not equal 1"
fi

By commenting out the else clause and running the script, we could show that the problem was not
in the else clause even though the error message suggested that it was.

Use echo commands to verify your assumptions. As you gain experience tracking down bugs,
you will discover that bugs are often not where you first expect to find them. A common problem will
be that you will make a false assumption about the performance of your program. You will see a
problem develop at a certain point in your program and assume that the problem is there. This is
often incorrect, as we have seen. To combat this, you should place echo commands in your code
while you are debugging, to produce messages that confirm the program is doing what is expected.
There are two kinds of messages that you should insert.

The first type simply announces that you have reached a certain point in the program. We saw this in
our earlier discussion on stubbing. It is useful to know that program flow is happening the way we
expect.

The second type displays the value of a variable (or variables) used in a calculation or test. You will
often find that a portion of your program will fail because something that you assumed was correct
earlier in your program is, in fact, incorrect and is causing your program to fail later on.

Watching Your Script Run
It is possible to have bash show you what it is doing when you run your script. To do this, add a "-x"
to the first line of your script, like this:

1/9/2020 Writing shell scripts - Lesson 9: Stay Out Of Trouble

linuxcommand.org/lc3_wss0090.php 5/5

#!/bin/bash -x

Now, when you run your script, bash will display each line (with expansions performed) as it
executes it. This technique is called tracing. Here is what it looks like:

[me@linuxbox me]$./trouble.bash
+ number=1
+ '[' 1 = 1 ']'
+ echo 'Number equals 1'
Number equals 1

Alternately, you can use the set command within your script to turn tracing on and off. Use set -x
to turn tracing on and set +x to turn tracing off. For example.:

#!/bin/bash

number=1

set -x
if [$number = "1"]; then
 echo "Number equals 1"
else
 echo "Number does not equal 1"
fi
set +x

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 10: Keyboard Input and Arithmetic

linuxcommand.org/lc3_wss0100.php 1/4

Keyboard Input and Arithmetic
Up to now, our scripts have not been interactive. That is, they did not require any input from the user.
In this lesson, we will see how your scripts can ask questions, and get and use responses.

read
To get input from the keyboard, you use the read command. The read command takes input from
the keyboard and assigns it to a variable. Here is an example:

#!/bin/bash

echo -n "Enter some text > "
read text
echo "You entered: $text"

As you can see, we displayed a prompt on line 3. Note that "-n" given to the echo command causes
it to keep the cursor on the same line; i.e., it does not output a linefeed at the end of the prompt.

Next, we invoke the read command with "text" as its argument. What this does is wait for the user
to type something followed by a carriage return (the Enter key) and then assign whatever was typed
to the variable text.

Here is the script in action:

[me@linuxbox me]$ read_demo.bash
Enter some text > this is some text
You entered: this is some text

If you don't give the read command the name of a variable to assign its input, it will use the
environment variable REPLY.

The read command also takes some command line options. The two most interesting ones are -t
and -s. The -t option followed by a number of seconds provides an automatic timeout for the read
command. This means that the read command will give up after the specified number of seconds if
no response has been received from the user. This option could be used in the case of a script that

http://linuxcommand.org/lc3_man_pages/readh.html

1/9/2020 Writing shell scripts - Lesson 10: Keyboard Input and Arithmetic

linuxcommand.org/lc3_wss0100.php 2/4

must continue (perhaps resorting to a default response) even if the user does not answer the
prompts. Here is the -t option in action:

#!/bin/bash

echo -n "Hurry up and type something! > "
if read -t 3 response; then
 echo "Great, you made it in time!"
else
 echo "Sorry, you are too slow!"
fi

The -s option causes the user's typing not to be displayed. This is useful when you are asking the
user to type in a password or other confidential information.

Arithmetic
Since we are working on a computer, it is natural to expect that it can perform some simple
arithmetic. The shell provides features for integer arithmetic.

What's an integer? That means whole numbers like 1, 2, 458, -2859. It does not mean fractional
numbers like 0.5, .333, or 3.1415. If you must deal with fractional numbers, there is a separate
program called bc which provides an arbitrary precision calculator language. It can be used in shell
scripts, but is beyond the scope of this tutorial.

Let's say you want to use the command line as a primitive calculator. You can do it like this:

[me@linuxbox me]$ echo $((2+2))

As you can see, when you surround an arithmetic expression with the double parentheses, the shell
will perform arithmetic expansion.

Notice that whitespace is ignored:

[me@linuxbox me]$ echo $((2+2))
4
[me@linuxbox me]$ echo $((2+2))
4
[me@linuxbox me]$ echo $((2 + 2))
4

http://linuxcommand.org/lc3_man_pages/bc1.html

1/9/2020 Writing shell scripts - Lesson 10: Keyboard Input and Arithmetic

linuxcommand.org/lc3_wss0100.php 3/4

The shell can perform a variety of common (and not so common) arithmetic operations. Here is an
example:

#!/bin/bash

first_num=0
second_num=0

echo -n "Enter the first number --> "
read first_num
echo -n "Enter the second number -> "
read second_num

echo "first number + second number = $((first_num + second_num))"
echo "first number - second number = $((first_num - second_num))"
echo "first number * second number = $((first_num * second_num))"
echo "first number / second number = $((first_num / second_num))"
echo "first number % second number = $((first_num % second_num))"
echo "first number raised to the"
echo "power of the second number = $((first_num ** second_num))"

Notice how the leading "$" is not needed to reference variables inside the arithmetic expression such
as "first_num + second_num".

Try this program out and watch how it handles division (remember, this is integer division) and how it
handles large numbers. Numbers that get too large overflow like the odometer in a car when you
exceed the number of miles it was designed to count. It starts over but first it goes through all the
negative numbers because of how integers are represented in memory. Division by zero (which is
mathematically invalid) does cause an error.

I'm sure that you recognize the first four operations as addition, subtraction, multiplication and
division, but that the fifth one may be unfamiliar. The "%" symbol represents remainder (also known
as modulo). This operation performs division but instead of returning a quotient like division, it
returns the remainder. While this might not seem very useful, it does, in fact, provide great utility
when writing programs. For example, when a remainder operation returns zero, it indicates that the
first number is an exact multiple of the second. This can be very handy:

#!/bin/bash

number=0

echo -n "Enter a number > "
read number

echo "Number is $number"
if [$((number % 2)) -eq 0]; then
 echo "Number is even"
else

1/9/2020 Writing shell scripts - Lesson 10: Keyboard Input and Arithmetic

linuxcommand.org/lc3_wss0100.php 4/4

 echo "Number is odd"
fi

Or, in this program that formats an arbitrary number of seconds into hours and minutes:

#!/bin/bash

seconds=0

echo -n "Enter number of seconds > "
read seconds

hours=$((seconds / 3600))
seconds=$((seconds % 3600))
minutes=$((seconds / 60))
seconds=$((seconds % 60))

echo "$hours hour(s) $minutes minute(s) $seconds second(s)"

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 11: Flow Control - Part 2

linuxcommand.org/lc3_wss0110.php 1/5

Flow Control - Part 2
Hold on to your hats. This lesson is going to be a big one!

More Branching
In the previous lesson on flow control we learned about the if command and how it is used to alter
program flow based on a command's exit status. In programming terms, this type of program flow is called
branching because it is like traversing a tree. You come to a fork in the tree and the evaluation of a
condition determines which branch you take.

There is a second and more complex kind of branching called a case. A case is multiple-choice branch.
Unlike the simple branch, where you take one of two possible paths, a case supports several possible
outcomes based on the evaluation of a value.

You can construct this type of branch with multiple if statements. In the example below, we evaluate
some input from the user:

#!/bin/bash

echo -n "Enter a number between 1 and 3 inclusive > "
read character
if ["$character" = "1"]; then
 echo "You entered one."
elif ["$character" = "2"]; then
 echo "You entered two."
elif ["$character" = "3"]; then
 echo "You entered three."
else
 echo "You did not enter a number between 1 and 3."
fi

Not very pretty.

Fortunately, the shell provides a more elegant solution to this problem. It provides a built-in command
called case, which can be used to construct an equivalent program:

#!/bin/bash

echo -n "Enter a number between 1 and 3 inclusive > "
read character
case $character in

http://linuxcommand.org/lc3_wss0080.php
http://linuxcommand.org/lc3_man_pages/caseh.html

1/9/2020 Writing shell scripts - Lesson 11: Flow Control - Part 2

linuxcommand.org/lc3_wss0110.php 2/5

 1) echo "You entered one."
 ;;
 2) echo "You entered two."
 ;;
 3) echo "You entered three."
 ;;
 *) echo "You did not enter a number between 1 and 3."
esac

The case command has the following form:

case word in
 patterns) commands ;;
esac

case selectively executes statements if word matches a pattern. You can have any number of patterns
and statements. Patterns can be literal text or wildcards. You can have multiple patterns separated by the
"|" character. Here is a more advanced example to show what I mean:

#!/bin/bash

echo -n "Type a digit or a letter > "
read character
case $character in
 # Check for letters
 [[:lower:]] | [[:upper:]]) echo "You typed the letter $character"
 ;;

 # Check for digits
 [0-9]) echo "You typed the digit $character"
 ;;

 # Check for anything else
 *) echo "You did not type a letter or a digit"
esac

Notice the special pattern "*". This pattern will match anything, so it is used to catch cases that did not
match previous patterns. Inclusion of this pattern at the end is wise, as it can be used to detect invalid
input.

Loops
The final type of program flow control we will discuss is called looping. Looping is repeatedly executing a
section of your program based on the exit status of a command. The shell provides three commands for

1/9/2020 Writing shell scripts - Lesson 11: Flow Control - Part 2

linuxcommand.org/lc3_wss0110.php 3/5

looping: while, until and for. We are going to cover while and until in this lesson and for in a
upcoming lesson.

The while command causes a block of code to be executed over and over, as long as the exit status of a
specified command is true. Here is a simple example of a program that counts from zero to nine:

#!/bin/bash

number=0
while ["$number" -lt 10]; do
 echo "Number = $number"
 number=$((number + 1))
done

On line 3, we create a variable called number and initialize its value to 0. Next, we start the while loop.
As you can see, we have specified a command that tests the value of number. In our example, we test to
see if number has a value less than 10.

Notice the word do on line 4 and the word done on line 7. These enclose the block of code that will be
repeated as long as the exit status remains zero.

In most cases, the block of code that repeats must do something that will eventually change the exit
status, otherwise you will have what is called an endless loop; that is, a loop that never ends.

In the example, the repeating block of code outputs the value of number (the echo command on line 5)
and increments number by one on line 6. Each time the block of code is completed, the test command's
exit status is evaluated again. After the tenth iteration of the loop, number has been incremented ten
times and the test command will terminate with a non-zero exit status. At that point, the program flow
resumes with the statement following the word done. Since done is the last line of our example, the
program ends.

The until command works exactly the same way, except the block of code is repeated as long as the
specified command's exit status is false. In the example below, notice how the expression given to the
test command has been changed from the while example to achieve the same result:

#!/bin/bash

number=0
until ["$number" -ge 10]; do
 echo "Number = $number"
 number=$((number + 1))
done

Building a Menu
One common way of presenting a user interface for a text based program is by using a menu. A menu is a
list of choices from which the user can pick.

1/9/2020 Writing shell scripts - Lesson 11: Flow Control - Part 2

linuxcommand.org/lc3_wss0110.php 4/5

In the example below, we use our new knowledge of loops and cases to build a simple menu driven
application:

#!/bin/bash

selection=
until ["$selection" = "0"]; do
 echo "
 PROGRAM MENU
 1 - Display free disk space
 2 - Display free memory

 0 - exit program
"
 echo -n "Enter selection: "
 read selection
 echo ""
 case $selection in
 1) df ;;
 2) free ;;
 0) exit ;;
 *) echo "Please enter 1, 2, or 0"
 esac
done

The purpose of the until loop in this program is to re-display the menu each time a selection has been
completed. The loop will continue until selection is equal to "0," the "exit" choice. Notice how we defend
against entries from the user that are not valid choices.

To make this program better looking when it runs, we can enhance it by adding a function that asks the
user to press the Enter key after each selection has been completed, and clears the screen before the
menu is displayed again. Here is the enhanced example:

#!/bin/bash

press_enter()
{
 echo -en "\nPress Enter to continue"
 read
 clear
}

selection=
until ["$selection" = "0"]; do
 echo "
 PROGRAM MENU
 1 - display free disk space
 2 - display free memory

 0 - exit program

1/9/2020 Writing shell scripts - Lesson 11: Flow Control - Part 2

linuxcommand.org/lc3_wss0110.php 5/5

"
 echo -n "Enter selection: "
 read selection
 echo ""
 case $selection in
 1) df ; press_enter ;;
 2) free ; press_enter ;;
 0) exit ;;
 *) echo "Please enter 1, 2, or 0"; press_enter
 esac
done

When your computer hangs...
We have all had the experience of an application hanging. Hanging is when a program suddenly
seems to stop and become unresponsive. While you might think that the program has stopped, in
most cases, the program is still running but its program logic is stuck in an endless loop.

Imagine this situation: you have an external device attached to your computer, such as a USB disk
drive but you forgot to turn it on. You try and use the device but the application hangs instead. When
this happens, you could picture the following dialog going on between the application and the
interface for the device:

Application: Are you ready?
Interface: Device not ready.

Application: Are you ready?
Interface: Device not ready.

Application: Are you ready?
Interface: Device not ready.

Application: Are you ready?
Interface: Device not ready.

and so on, forever.

Well-written software tries to avoid this situation by instituting a timeout. This means that the loop is
also counting the number of attempts or calculating the amount of time it has waited for something to
happen. If the number of tries or the amount of time allowed is exceeded, the loop exits and the
program generates an error and exits.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium, provided this
copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 1/8

Positional Parameters
When we last left our script, it looked something like this:

#!/bin/bash

sysinfo_page - A script to produce a system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

system_info()
{
 echo "<h2>System release info</h2>"
 echo "<p>Function not yet implemented</p>"

} # end of system_info

show_uptime()
{
 echo "<h2>System uptime</h2>"
 echo "<pre>"
 uptime
 echo "</pre>"

} # end of show_uptime

drive_space()
{
 echo "<h2>Filesystem space</h2>"
 echo "<pre>"
 df
 echo "</pre>"

} # end of drive_space

home_space()

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 2/8

{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

We have most things working, but there are several more features I want to add:

1. I want to specify the name of the output file on the command line, as well as set a default
output file name if no name is specified.

2. I want to offer an interactive mode that will prompt for a file name and warn the user if the file
exists and prompt the user to overwrite it.

3. Naturally, we want to have a help option that will display a usage message.

All of these features involve using command line options and arguments. To handle options on the
command line, we use a facility in the shell called positional parameters. Positional parameters are a
series of special variables ($0 through $9) that contain the contents of the command line.

Let's imagine the following command line:

[me@linuxbox me]$ some_program word1 word2 word3

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 3/8

If some_program were a bash shell script, we could read each item on the command line because
the positional parameters contain the following:

$0 would contain "some_program"
$1 would contain "word1"
$2 would contain "word2"
$3 would contain "word3"

Here is a script you can use to try this out:

#!/bin/bash

echo "Positional Parameters"
echo '$0 = ' $0
echo '$1 = ' $1
echo '$2 = ' $2
echo '$3 = ' $3

Detecting Command Line Arguments
Often, you will want to check to see if you have arguments on which to act. There are a couple of
ways to do this. First, you could simply check to see if $1 contains anything like so:

#!/bin/bash

if ["$1" != ""]; then
 echo "Positional parameter 1 contains something"
else
 echo "Positional parameter 1 is empty"
fi

Second, the shell maintains a variable called $# that contains the number of items on the command
line in addition to the name of the command ($0).

#!/bin/bash

if [$# -gt 0]; then
 echo "Your command line contains $# arguments"
else
 echo "Your command line contains no arguments"

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 4/8

fi

Command Line Options
As we discussed before, many programs, particularly ones from the GNU Project, support both short
and long command line options. For example, to display a help message for many of these
programs, you may use either the "-h" option or the longer "--help" option. Long option names are
typically preceded by a double dash. We will adopt this convention for our scripts.

Here is the code we will use to process our command line:

interactive=
filename=~/sysinfo_page.html

while ["$1" != ""]; do
 case $1 in
 -f | --file) shift
 filename=$1
 ;;
 -i | --interactive) interactive=1
 ;;
 -h | --help) usage
 exit
 ;;
 *) usage
 exit 1
 esac
 shift
done

This code is a little tricky, so bear with me as I attempt to explain it.

The first two lines are pretty easy. We set the variable interactive to be empty. This will indicate
that the interactive mode has not been requested. Then we set the variable filename to contain a
default file name. If nothing else is specified on the command line, this file name will be used.

After these two variables are set, we have default settings, in case the user does not specify any
options.

Next, we construct a while loop that will cycle through all the items on the command line and
process each one with case. The case will detect each possible option and process it accordingly.

Now the tricky part. How does that loop work? It relies on the magic of shift.

shift is a shell builtin that operates on the positional parameters. Each time you invoke shift, it
"shifts" all the positional parameters down by one. $2 becomes $1, $3 becomes $2, $4 becomes

http://www.gnu.org/

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 5/8

$3, and so on. Try this:

#!/bin/bash

echo "You start with $# positional parameters"

Loop until all parameters are used up
while ["$1" != ""]; do
 echo "Parameter 1 equals $1"
 echo "You now have $# positional parameters"

 # Shift all the parameters down by one
 shift

done

Getting an Option's Argument
Our "-f" option requires a valid file name as an argument. We use shift again to get the next item
from the command line and assign it to filename. Later we will have to check the content of
filename to make sure it is valid.

Integrating the Command Line Processor into the Script
We will have to move a few things around and add a usage function to get this new routine
integrated into our script. We'll also add some test code to verify that the command line processor is
working correctly. Our script now looks like this:

#!/bin/bash

sysinfo_page - A script to produce a system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

system_info()
{
 echo "<h2>System release info</h2>"
 echo "<p>Function not yet implemented</p>"

} # end of system_info

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 6/8

show_uptime()
{
 echo "<h2>System uptime</h2>"
 echo "<pre>"
 uptime
 echo "</pre>"

} # end of show_uptime

drive_space()
{
 echo "<h2>Filesystem space</h2>"
 echo "<pre>"
 df
 echo "</pre>"

} # end of drive_space

home_space()
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

write_page()
{
 cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 7/8

}

usage()
{
 echo "usage: sysinfo_page [[[-f file] [-i]] | [-h]]"
}

Main

interactive=
filename=~/sysinfo_page.html

while ["$1" != ""]; do
 case $1 in
 -f | --file) shift
 filename=$1
 ;;
 -i | --interactive) interactive=1
 ;;
 -h | --help) usage
 exit
 ;;
 *) usage
 exit 1
 esac
 shift
done

Test code to verify command line processing

if ["$interactive" = "1"]; then
 echo "interactive is on"
else
 echo "interactive is off"
fi
echo "output file = $filename"

Write page (comment out until testing is complete)

write_page > $filename

Adding Interactive Mode
The interactive mode is implemented with the following code:

1/9/2020 Writing shell scripts - Lesson 12: Positional Parameters

linuxcommand.org/lc3_wss0120.php 8/8

if ["$interactive" = "1"]; then

 response=

 echo -n "Enter name of output file [$filename] > "
 read response
 if [-n "$response"]; then
 filename=$response
 fi

 if [-f $filename]; then
 echo -n "Output file exists. Overwrite? (y/n) > "
 read response
 if ["$response" != "y"]; then
 echo "Exiting program."
 exit 1
 fi
 fi
fi

First, we check if the interactive mode is on, otherwise we don't have anything to do. Next, we ask
the user for the file name. Notice the way the prompt is worded:

echo -n "Enter name of output file [$filename] > "

We display the current value of filename since, the way this routine is coded, if the user just
presses the enter key, the default value of filename will be used. This is accomplished in the next
two lines where the value of response is checked. If response is not empty, then filename is
assigned the value of response. Otherwise, filename is left unchanged, preserving its default
value.

After we have the name of the output file, we check if it already exists. If it does, we prompt the user.
If the user response is not "y," we give up and exit, otherwise we can proceed.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 13: Flow Control - Part 3

linuxcommand.org/lc3_wss0130.php 1/5

Flow Control - Part 3
Now that you have learned about positional parameters, it is time to cover the remaining flow control
statement, for. Like while and until, for is used to construct loops. for works like this:

for variable in words; do
 commands
done

In essence, for assigns a word from the list of words to the specified variable, executes the
commands, and repeats this over and over until all the words have been used up. Here is an
example:

#!/bin/bash

for i in word1 word2 word3; do
 echo $i
done

In this example, the variable i is assigned the string "word1", then the statement echo $i is
executed, then the variable i is assigned the string "word2", and the statement echo $i is
executed, and so on, until all the words in the list of words have been assigned.

The interesting thing about for is the many ways you can construct the list of words. All kinds of
expansions can be used. In the next example, we will construct the list of words using command
substitution:

#!/bin/bash

count=0
for i in $(cat ~/.bash_profile); do
 count=$((count + 1))
 echo "Word $count ($i) contains $(echo -n $i | wc -c) characters"
done

http://linuxcommand.org/lc3_man_pages/forh.html

1/9/2020 Writing shell scripts - Lesson 13: Flow Control - Part 3

linuxcommand.org/lc3_wss0130.php 2/5

Here we take the file .bash_profile and count the number of words in the file and the number of
characters in each word.

So what's this got to do with positional parameters? Well, one of the features of for is that it can use
the positional parameters as the list of words:

#!/bin/bash

for i in "$@"; do
 echo $i
done

The shell variable "$@" contains the list of command line arguments. This technique is often used to
process a list of files on the command line. Here is a another example:

#!/bin/bash

for filename in "$@"; do
 result=
 if [-f "$filename"]; then
 result="$filename is a regular file"
 else
 if [-d "$filename"]; then
 result="$filename is a directory"
 fi
 fi
 if [-w "$filename"]; then
 result="$result and it is writable"
 else
 result="$result and it is not writable"
 fi
 echo "$result"
done

Try this script. Give it a list of files or a wildcard like "*" to see it work.

Here is another example script. This one compares the files in two directories and lists which files in
the first directory are missing from the second.

#!/bin/bash

cmp_dir - program to compare two directories

Check for required arguments
if [$# -ne 2]; then
 echo "usage: $0 directory_1 directory_2" 1>&2

1/9/2020 Writing shell scripts - Lesson 13: Flow Control - Part 3

linuxcommand.org/lc3_wss0130.php 3/5

 exit 1
fi

Make sure both arguments are directories
if [! -d $1]; then
 echo "$1 is not a directory!" 1>&2
 exit 1
fi

if [! -d $2]; then
 echo "$2 is not a directory!" 1>&2
 exit 1
fi

Process each file in directory_1, comparing it to directory_2
missing=0
for filename in $1/*; do
 fn=$(basename "$filename")
 if [-f "$filename"]; then
 if [! -f "$2/$fn"]; then
 echo "$fn is missing from $2"
 missing=$((missing + 1))
 fi
 fi
done
echo "$missing files missing"

Now on to the real work. We are going to improve the home_space function in our script to output
more information. You will recall that our previous version looked like this:

home_space()
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

Here is the new version:

1/9/2020 Writing shell scripts - Lesson 13: Flow Control - Part 3

linuxcommand.org/lc3_wss0130.php 4/5

home_space()
{
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 format="%8s%10s%10s %-s\n"
 printf "$format" "Dirs" "Files" "Blocks" "Directory"
 printf "$format" "----" "-----" "------" "---------"
 if [$(id -u) = "0"]; then
 dir_list="/home/*"
 else
 dir_list=$HOME
 fi
 for home_dir in $dir_list; do
 total_dirs=$(find $home_dir -type d | wc -l)
 total_files=$(find $home_dir -type f | wc -l)
 total_blocks=$(du -s $home_dir)
 printf "$format" $total_dirs $total_files $total_blocks
 done
 echo "</pre>"

} # end of home_space

This improved version introduces a new command printf, which is used to produce formatted
output according to the contents of a format string. printf comes from the C programming
language and has been implemented in many other programming languages including C++, Perl,
awk, java, PHP, and of course, bash. You can read more about printf format strings at:

GNU Awk User's Guide - Control Letters
GNU Awk User's Guide - Format Modifiers

We also introduce the find command. find is used to search for files or directories that meet
specific criteria. In the home_space function, we use find to list the directories and regular files in
each home directory. Using the wc command, we count the number of files and directories found.

The really interesting thing about home_space is how we deal with the problem of superuser
access. You will notice that we test for the superuser with id and, according to the outcome of the
test, we assign different strings to the variable dir_list, which becomes the list of words for the
for loop that follows. This way, if an ordinary user runs the script, only his/her home directory will be
listed.

Another function that can use a for loop is our unfinished system_info function. We can build it
like this:

system_info()
{
 # Find any release files in /etc

 if ls /etc/*release 1>/dev/null 2>&1; then
 echo "<h2>System release info</h2>"

http://linuxcommand.org/lc3_man_pages/printf1.html
http://www.gnu.org/software/gawk/manual/html_node/Control-Letters.html#Control-Letters
http://www.gnu.org/software/gawk/manual/html_node/Format-Modifiers.html#Format-Modifiers
http://linuxcommand.org/man_pages/find1.html

1/9/2020 Writing shell scripts - Lesson 13: Flow Control - Part 3

linuxcommand.org/lc3_wss0130.php 5/5

 echo "<pre>"
 for i in /etc/*release; do

 # Since we can't be sure of the
 # length of the file, only
 # display the first line.

 head -n 1 $i
 done
 uname -orp
 echo "</pre>"
 fi

} # end of system_info

In this function, we first determine if there are any release files to process. The release files contain
the name of the vendor and the version of the distribution. They are located in the /etc directory. To
detect them, we perform an ls command and throw away all of its output. We are only interested in
the exit status. It will be true if any files are found.

Next, we output the HTML for this section of the page, since we now know that there are release
files to process. To process the files, we start a for loop to act on each one. Inside the loop, we use
the head command to return the first line of each file.

Finally, we use the uname command with the "o", "r", and "p" options to obtain some additional
information from the system.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/head1.html
http://linuxcommand.org/lc3_man_pages/uname1.html
mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

linuxcommand.org/lc3_wss0140.php 1/5

Errors and Signals and Traps (Oh My!) - Part 1
In this lesson, we're going to look at handling errors during the execution of your scripts.

The difference between a good program and a poor one is often measured in terms of the program's
robustness. That is, the program's ability to handle situations in which something goes wrong.

Exit Status
As you recall from previous lessons, every well-written program returns an exit status when it finishes.
If a program finishes successfully, the exit status will be zero. If the exit status is anything other than
zero, then the program failed in some way.

It is very important to check the exit status of programs you call in your scripts. It is also important that
your scripts return a meaningful exit status when they finish. I once had a Unix system administrator
who wrote a script for a production system containing the following 2 lines of code:

Example of a really bad idea

cd $some_directory
rm *

Why is this such a bad way of doing it? It's not, if nothing goes wrong. The two lines change the
working directory to the name contained in $some_directory and delete the files in that directory.
That's the intended behavior. But what happens if the directory named in $some_directory doesn't
exist? In that case, the cd command will fail and the script executes the rm command on the current
working directory. Not the intended behavior!

By the way, my hapless system administrator's script suffered this very failure and it destroyed a large
portion of an important production system. Don't let this happen to you!

The problem with the script was that it did not check the exit status of the cd command before
proceeding with the rm command.

Checking the Exit Status
There are several ways you can get and respond to the exit status of a program. First, you can
examine the contents of the $? environment variable. $? will contain the exit status of the last
command executed. You can see this work with the following:

[me] $ true; echo $?
0
[me] $ false; echo $?
1

1/9/2020 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

linuxcommand.org/lc3_wss0140.php 2/5

The true and false commands are programs that do nothing except return an exit status of zero
and one, respectively. Using them, we can see how the $? environment variable contains the exit
status of the previous program.

So to check the exit status, we could write the script this way:

Check the exit status

cd $some_directory
if ["$?" = "0"]; then
 rm *
else
 echo "Cannot change directory!" 1>&2
 exit 1
fi

In this version, we examine the exit status of the cd command and if it's not zero, we print an error
message on standard error and terminate the script with an exit status of 1.

While this is a working solution to the problem, there are more clever methods that will save us some
typing. The next approach we can try is to use the if statement directly, since it evaluates the exit
status of commands it is given.

Using if, we could write it this way:

A better way

if cd $some_directory; then
 rm *
else
 echo "Could not change directory! Aborting." 1>&2
 exit 1
fi

Here we check to see if the cd command is successful. Only then does rm get executed; otherwise an
error message is output and the program exits with a code of 1, indicating that an error has occurred.

An Error Exit Function
Since we will be checking for errors often in our programs, it makes sense to write a function that will
display error messages. This will save more typing and promote laziness.

1/9/2020 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

linuxcommand.org/lc3_wss0140.php 3/5

An error exit function

error_exit()
{
 echo "$1" 1>&2
 exit 1
}

Using error_exit

if cd $some_directory; then
 rm *
else
 error_exit "Cannot change directory! Aborting."
fi

AND and OR Lists
Finally, we can further simplify our script by using the AND and OR control operators. To explain how
they work, I will quote from the bash man page:

"The control operators && and || denote AND lists and OR lists, respectively. An AND list has the form

command1 && command2

command2 is executed if, and only if, command1 returns an exit status of zero.

An OR list has the form

command1 || command2

command2 is executed if, and only if, command1 returns a non-zero exit status. The exit status of AND
and OR lists is the exit status of the last command executed in the list."

Again, we can use the true and false commands to see this work:

[me] $ true || echo "echo executed"
[me] $ false || echo "echo executed"
echo executed
[me] $ true && echo "echo executed"
echo executed
[me] $ false && echo "echo executed"
[me] $

http://linuxcommand.org/man_pages/bash1.html

1/9/2020 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

linuxcommand.org/lc3_wss0140.php 4/5

Using this technique, we can write an even simpler version:

Simplest of all

cd $some_directory || error_exit "Cannot change directory! Aborting"
rm *

If an exit is not required in case of error, then you can even do this:

Another way to do it if exiting is not desired

cd $some_directory && rm *

I want to point out that even with the defense against errors we have introduced in our example for the
use of cd, this code is still vulnerable to a common programming error, namely, what happens if the
name of the variable containing the name of the directory is misspelled? In that case, the shell will
interpret the variable as empty and the cd succeed, but it will change directories to the user's home
directory, so beware!

Improving the Error Exit Function
There are a number of improvements that we can make to the error_exit function. I like to include
the name of the program in the error message to make clear where the error is coming from. This
becomes more important as your programs get more complex and you start having scripts launching
other scripts, etc. Also, note the inclusion of the LINENO environment variable which will help you
identify the exact line within your script where the error occurred.

#!/bin/bash

A slicker error handling routine

I put a variable in my scripts named PROGNAME which
holds the name of the program being run. You can get this
value from the first item on the command line ($0).

PROGNAME=$(basename $0)

error_exit()
{

--
Function for exit due to fatal program error
Accepts 1 argument:
string containing descriptive error message
--

1/9/2020 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

linuxcommand.org/lc3_wss0140.php 5/5

 echo "${PROGNAME}: ${1:-"Unknown Error"}" 1>&2
 exit 1
}

Example call of the error_exit function. Note the inclusion
of the LINENO environment variable. It contains the current
line number.

echo "Example of error with line number and message"
error_exit "$LINENO: An error has occurred."

The use of the curly braces within the error_exit function is an example of parameter expansion.
You can surround a variable name with curly braces (as with ${PROGNAME}) if you need to be sure it
is separated from surrounding text. Some people just put them around every variable out of habit.
That usage is simply a style thing. The second use, ${1:-"Unknown Error"} means that if
parameter 1 ($1) is undefined, substitute the string "Unknown Error" in its place. Using parameter
expansion, it is possible to perform a number of useful string manipulations. You can read more about
parameter expansion in the bash man page under the topic "EXPANSIONS".

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium, provided
this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/bash1.html
mailto:bshotts@users.sourceforge.net

1/9/2020 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

linuxcommand.org/lc3_wss0150.php 1/6

Errors and Signals and Traps (Oh, My!) - Part 2
Errors are not the only way that a script can terminate unexpectedly. You also have to be concerned
with signals. Consider the following program:

#!/bin/bash

echo "this script will endlessly loop until you stop it"
while true; do
 : # Do nothing
done

After you launch this script it will appear to hang. Actually, like most programs that appear to hang, it
is really stuck inside a loop. In this case, it is waiting for the true command to return a non-zero exit
status, which it never does. Once started, the script will continue until bash receives a signal that will
stop it. You can send such a signal by typing Ctrl-c which is the signal called SIGINT (short for
SIGnal INTerrupt).

Cleaning Up After Yourself
Okay, so a signal can come along and make your script terminate. Why does it matter? Well, in
many cases it doesn't matter and you can ignore signals, but in some cases it will matter.

Let's take a look at another script:

#!/bin/bash

Program to print a text file with headers and footers

TEMP_FILE=/tmp/printfile.txt

pr $1 > $TEMP_FILE

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE
fi

1/9/2020 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

linuxcommand.org/lc3_wss0150.php 2/6

This script processes a text file specified on the command line with the pr command and stores the
result in a temporary file. Next, it asks the user if they want to print the file. If the user types "y", then
the temporary file is passed to the lpr program for printing (you may substitute less for lpr if you
don't actually have a printer attached to your system.)

Now, I admit this script has a lot of design problems. While it needs a file name passed on the
command line, it doesn't check that it got one, and it doesn't check that the file actually exists. But
the problem I want to focus on here is the fact that when the script terminates, it leaves behind the
temporary file.

Good practice would dictate that we delete the temporary file $TEMP_FILE when the script
terminates. This is easily accomplished by adding the following to the end of the script:

rm $TEMP_FILE

This would seem to solve the problem, but what happens if the user types ctrl-c when the "Print file?
[y/n]:" prompt appears? The script will terminate at the read command and the rm command is
never executed. Clearly, we need a way to respond to signals such as SIGINT when the Ctrl-c key is
typed.

Fortunately, bash provides a method to perform commands if and when signals are received.

trap
The trap command allows you to execute a command when a signal is received by your script. It
works like this:

trap arg signals

"signals" is a list of signals to intercept and "arg" is a command to execute when one of the signals is
received. For our printing script, we might handle the signal problem this way:

#!/bin/bash

Program to print a text file with headers and footers

TEMP_FILE=/tmp/printfile.txt

trap "rm $TEMP_FILE; exit" SIGHUP SIGINT SIGTERM

pr $1 > $TEMP_FILE

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then

http://linuxcommand.org/man_pages/pr1.html
http://linuxcommand.org/man_pages/lpr1.html

1/9/2020 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

linuxcommand.org/lc3_wss0150.php 3/6

 lpr $TEMP_FILE
fi
rm $TEMP_FILE

Here we have added a trap command that will execute "rm $TEMP_FILE" if any of the listed
signals is received. The three signals listed are the most common ones that you will encounter, but
there are many more that can be specified. For a complete list, type "trap -l". In addition to listing
the signals by name, you may alternately specify them by number.

Signal 9 from Outer Space
There is one signal that you cannot trap: SIGKILL or signal 9. The kernel immediately
terminates any process sent this signal and no signal handling is performed. Since it will always
terminate a program that is stuck, hung, or otherwise screwed up, it is tempting to think that it's
the easy way out when you have to get something to stop and go away. Often you will see
references to the following command which sends the SIGKILL signal:

kill -9

However, despite its apparent ease, you must remember that when you send this signal, no
processing is done by the application. Often this is OK, but with many programs it's not. In
particular, many complex programs (and some not-so-complex) create lock files to prevent
multiple copies of the program from running at the same time. When a program that uses a lock
file is sent a SIGKILL, it doesn't get the chance to remove the lock file when it terminates. The
presence of the lock file will prevent the program from restarting until the lock file is manually
removed.

Be warned. Use SIGKILL as a last resort.

A clean_up Function
While the trap command has solved the problem, we can see that it has some limitations. Most
importantly, it will only accept a single string containing the command to be performed when the
signal is received. You could get clever and use ";" and put multiple commands in the string to get
more complex behavior, but frankly, it's ugly. A better way would be to create a function that is called
when you want to perform any actions at the end of your script. In my scripts, I call this function
clean_up.

#!/bin/bash

Program to print a text file with headers and footers

TEMP_FILE=/tmp/printfile.txt

clean_up() {

1/9/2020 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

linuxcommand.org/lc3_wss0150.php 4/6

 # Perform program exit housekeeping
 rm $TEMP_FILE
 exit
}

trap clean_up SIGHUP SIGINT SIGTERM

pr $1 > $TEMP_FILE

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE
fi
clean_up

The use of a clean up function is a good idea for your error handling routines too. After all, when
your program terminates (for whatever reason), you should clean up after yourself. Here is finished
version of our program with improved error and signal handling:

#!/bin/bash

Program to print a text file with headers and footers

Usage: printfile file

Create a temporary file name that gives preference
to the user's local tmp directory and has a name
that is resistant to "temp race attacks"

if [-d "~/tmp"]; then
 TEMP_DIR=~/tmp
else
 TEMP_DIR=/tmp
fi
TEMP_FILE=$TEMP_DIR/printfile.$$.$RANDOM
PROGNAME=$(basename $0)

usage() {

 # Display usage message on standard error
 echo "Usage: $PROGNAME file" 1>&2
}

clean_up() {

 # Perform program exit housekeeping
 # Optionally accepts an exit status
 rm -f $TEMP_FILE
 exit $1

1/9/2020 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

linuxcommand.org/lc3_wss0150.php 5/6

}

error_exit() {

 # Display error message and exit
 echo "${PROGNAME}: ${1:-"Unknown Error"}" 1>&2
 clean_up 1
}

trap clean_up SIGHUP SIGINT SIGTERM

if [$# != "1"]; then
 usage
 error_exit "one file to print must be specified"
fi
if [! -f "$1"]; then
 error_exit "file $1 cannot be read"
fi

pr $1 > $TEMP_FILE || error_exit "cannot format file"

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE || error_exit "cannot print file"
fi
clean_up

Creating Safe Temporary Files
In the program above, there a number of steps taken to help secure the temporary file used by this
script. It is a Unix tradition to use a directory called /tmp to place temporary files used by programs.
Everyone may write files into this directory. This naturally leads to some security concerns. If
possible, avoid writing files in the /tmp directory. The preferred technique is to write them in a local
directory such as ~/tmp (a tmp subdirectory in the user's home directory.) If you must write files in
/tmp, you must take steps to make sure the file names are not predictable. Predictable file names
allow an attacker to create symbolic links to other files that the attacker wants you to overwrite.

A good file name will help you figure out what wrote the file, but will not be entirely predictable. In the
script above, the following line of code created the temporary file $TEMP_FILE:

TEMP_FILE=$TEMP_DIR/printfile.$$.$RANDOM

The $TEMP_DIR variable contains either /tmp or ~/tmp depending on the availability of the
directory. It is common practice to embed the name of the program into the file name. We have done
that with the string "printfile". Next, we use the $$ shell variable to embed the process id (pid) of the
program. This further helps identify what process is responsible for the file. Surprisingly, the process
id alone is not unpredictable enough to make the file safe, so we add the $RANDOM shell variable to

1/9/2020 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

linuxcommand.org/lc3_wss0150.php 6/6

append a random number to the file name. With this technique, we create a file name that is both
easily identifiable and unpredictable.

There You Have It
This concludes the LinuxCommand.org tutorials. I sincerely hope you found them both useful and
enjoyable. If you did, continue your command line adventure by downloading my book.

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/tlcl.php
mailto:bshotts@users.sourceforge.net

1/9/2020 The Linux Command Line by William Shotts

linuxcommand.org/tlcl.php 1/2

The Linux Command Line
A Book By William Shotts
Fifth Internet Edition Available Now!

Designed for the new command line user, this 555-page volume
covers the same material as LinuxCommand.org but in much greater
detail. In addition to the basics of command line use and shell
scripting, The Linux Command Line includes chapters on many
common programs used on the command line, as well as more
advanced topics.

Released under a Creative Commons license , this book is
available for free download in PDF format. Download it here .

The book is available in printed form, published by No
Starch Press . Copies may be purchased wherever fine books
are sold. No Starch Press also offers electronic formats for
popular e-readers.

In addition to English, the printed book is also available in
the following languages:

Korean
Serbian
Chinese (Traditional)
Chinese (Simplified)
Russian

Find The Linux Command Line at your local library .

Want to translate the Creative Commons version of The
Linux Command Line? Please see the Community Translation
Policy for details.

The following community translations are now available:

Arabic Translation by Abd Allatif Eymsh
Spanish (in progress). Translation by Adriano Sánchez
Portuguese (in progress). Translation by Matheus Sales
Italian (in progress). Translation by Francesco Cargiuli
Romanian (in progress). Translation by Vlad Paval

What Readers Are Saying About The Linux Command Line!
"I have been using Linux for a little over a year. Read as much as I could including Rute,
and many others. I have learned more in the first 93 pages of your book than any
others!!!!"

http://nostarch.com/tlcl.htm
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
http://nostarch.com/tlcl2
http://www.bjpublic.co.kr/skin12/productSearchView.php?board_data=aWR4PTg3JnN0YXJ0UGFnZT0wJmxpc3RObz0x||&search_items=dG90YWxzZWFyY2g9c2hvdHRz||
http://www.mikroknjiga.rs/store/prikaz.php?ref=978-86-7555-387-8
http://books.gotop.com.tw/e_ACA018900
http://www.ptpress.com.cn/Book.aspx?id=24811
https://www.piter.com/collection/linux/product/komandnaya-stroka-linux-polnoe-rukovodstvo
http://www.worldcat.org/title/linux-command-line-a-complete-introduction/oclc/714726098&referer=brief_results
http://linuxcommand.org/lc3_translations.php
http://sourceforge.net/projects/omlx/files/open%20books/TLCL/The_Linux_Command_Line-arabic-14.07.pdf/download

1/9/2020 The Linux Command Line by William Shotts

linuxcommand.org/tlcl.php 2/2

"What a great help your book has been for me! I was looking for a book like yours, but I
never was able to find one that really walks the reader through the Linux command line in
a general sort of way. Do you know of any others? If I recall, there are a lot of books
dedicated to shell scripting, but none that are geared to regular command-line use."

"Fantastic book!! I have recently switched from the legacy OS to Linux and I have been
trying to find a distro that mimics this legacy OS in fear of using the terminal. I ran across
this book and opened the terminal for the first time. This book teaches you everything you
need to know about the shell and does it with ease. It starts by giving you a solid
foundation and builds from there. Its simplicity and informative structure is ideal for all
new beginners switching to Linux. I am now always on the terminal even for the simplest
things. Not only does this build love, but I also get to practice my shell scripting. Great
book!!"

"I've been enjoying reading the book and have learned a lot from every chapter. Your
writing is very clear, and I've enjoyed following along with your examples. I've skimmed a
couple of Linux books before, but never had enough time to really get into them. From
those experiences however, I think your book is much clearer and approachable for
beginners."

"WOW! What a great book. It will clearly provide a stepping stone for many people who
want to wean themselves off of their GUI habit, or perhaps just "Make the difficult
possible."

"I think one of the greatest assets of the book that most others about Linux don't have is
the conversational tone. I feel like in almost every chapter, there are parts where you lead
the reader to ask questions of the material that aren't necessarily covered."

Read more reviews at No Starch Press and Amazon .

© 2000-2020, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://nostarch.com/tlcl2#reviews
http://www.amazon.com/The-Linux-Command-Line-Introduction/product-reviews/1593273894/ref=dp_top_cm_cr_acr_txt?ie=UTF8&showViewpoints=1
mailto:bshotts@users.sourceforge.net

